Math Has a Fatal Flaw


0

Math Has a Fatal Flaw

Math Has a Fatal Flaw

Not everything that is true can be proven. This discovery transformed infinity, changed the course of a world war and led to the modern computer.

Special thanks to Prof. Asaf Karagila for consultation on set theory and specific rewrites, to Prof. Alex Kontorovich for reviews of earlier drafts, Prof. Toby ‘Qubit’ Cubitt for the help with the spectral gap, to Henry Reich for the helpful feedback and comments on the video.

Learn more :

Dunham, W. (2013, July). A Note on the Origin of the Twin Prime Conjecture. In Notices of the International Congress of Chinese Mathematicians (Vol. 1, No. 1, pp. 63-65). International Press of Boston. — https://ve42.co/Dunham2013

Conway, J. (1970). The game of life. Scientific American, 223(4), 4. — https://ve42.co/Conway1970

Churchill, A., Biderman, S., Herrick, A. (2019). Magic: The Gathering is Turing Complete. ArXiv. — https://ve42.co/Churchill2019

Gaifman, H. (2006). Naming and Diagonalization, from Cantor to Godel to Kleene. Logic Journal of the IGPL, 14(5), 709-728. — https://ve42.co/Gaifman2006

Lénárt, I. (2010). Gauss, Bolyai, Lobachevsky–in General Education?(Hyperbolic Geometry as Part of the Mathematics Curriculum). In Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture (pp. 223-230). Tessellations Publishing. — https://ve42.co/Lnrt2010

Attribution of Poincare’s quote, The Mathematical Intelligencer, vol. 13, no. 1, Winter 1991. — https://ve42.co/Poincare

Irvine, A. D., & Deutsch, H. (1995). Russell’s paradox. — https://ve42.co/Irvine1995

Gödel, K. (1992). On formally undecidable propositions of Principia Mathematica and related systems. Courier Corporation. — https://ve42.co/Godel1931

Russell, B., & Whitehead, A. (1973). Principia Mathematica [PM], vol I, 1910, vol. II, 1912, vol III, 1913, vol. I, 1925, vol II & III, 1927, Paperback Edition to* 56. Cambridge UP. — https://ve42.co/Russel1910

Gödel, K. (1986). Kurt Gödel: Collected Works: Volume I: Publications 1929-1936 (Vol. 1). Oxford University Press, USA. — https://ve42.co/Godel1986

Cubitt, T. S., Perez-Garcia, D., & Wolf, M. M. (2015). Undecidability of the spectral gap. Nature, 528(7581), 207-211. — https://ve42.co/Cubitt2015


Like it? Share with your friends!

0
WEB EDUCATION

0 Comments

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *