-1

# Arithmetic and Geometric Sequences

Arithmetic and Geometric Sequences

VIDEO 1

An introduction to arithmetic and geometric sequences

VIDEO 2

This algebra 1 and 2 video provides an overview of arithmetic sequence geometric series. It provides plenty of examples and practice problems that will help you to prepare for your next test or exam in your algebra or pre-calculus course. Here is a list of topics covered in this video:

1. General Formula Sheet For Arithmetic and Geometric Series 2. How To Write The First Four Terms of a Sequence Given The Explicit Formula 3. How To Write The Next Three Terms Given a Recursive Formula / Equation 4. How To Determine if a Sequence is Arithmetic or Geometric 5. How To Find The Common Difference of an Arithmetic Series 6. How To Find The Common Ratio of a Geometric Sequence 7. How To Write a General Formula For an Arithmetic or a Geometric Sequence That Contains Fractions 8. How To Find The nth term of any sequence 9. How To Find The Common Difference and Ratio of a Sequence Given Nonsuccessive terms 10. Arithmetic and Geometric Mean Between Two Numbers 11. Sigma Notation – How To Calculate The Partial Sum 12. How To Express a Sequence Using Summation Notation 13. How To Find The Partial Sum of An Arithmetic Sequence 14. How To Calculate The Finite Sum of a Geometric Series 15. How To Calculate The Infinite Sum of a Converging Geometric Series 16. Sigma Notation Operations – Addition, Subtraction, & Multiplication 17. Word Problems – How To Find How Many Seats Are Inside an Auditorium, Concert Hall, or Theater Given The Number of Rows 18. Even, Odd, Positive Integer Word Problems 19. Number of Logs Word Problems 20. Population Growth Word Problems

VIDEO 3

What are the formulas for arithmetic and geometric sequences

An arithmetic sequence is a sequence in which each term of the sequence is obtained by adding a pre-determined value, called the common difference, to the preceding term. A geometric sequence is a sequence in which each term of the sequence is obtained by multiplying a pre-determined value, called the common ratio, to the preceding term.