188 exercices de mathématiques pour Terminale S

Stéphane PASQUET
Sommaire

Disponible sur http://www.mathweb.fr

22 février 2017

I Continuité & dérivabilité

1. Calculs élémentaires en $+\infty$.. 1
2. En $+\infty$ avec des formes indéterminées 1
3. En un nombre fini avec des formes indéterminées 1
4. Règle de l'Hôpital ... 2
5. Fonction $f : x \mapsto \frac{2x - \sqrt{x}}{2 + \sqrt{x}}$ 2
6. Fonctions $f : x \mapsto \sqrt{x^2 + 1} - 2x$ et $g : x \mapsto \frac{x}{\sqrt{x^2 + 1}}$ 2
7. Prolongement par continuité de $f : x \mapsto x - \frac{2}{\sqrt{4 - x - 2}}$ en 2 ... 3
8. Prolongement par continuité de $f : x \mapsto \frac{\sqrt{x^2 + x + 2 - 2}}{x - 1}$ en 1 3
9. Étude de la fonction $f : x \mapsto \frac{2x^2 - x - 1}{\sqrt{1 - x^2}}$ 3
10. Approximation d’un angle par la longueur d’un segment 4

II Fonction exponentielle .. 20

1. Produits, quotients et puissances ... 20
2. Simplification d’expressions ... 20
3. Équations .. 20
4. Équations avec changement de variable .. 21
5. Inéquations .. 21
6. Inéquations avec changement de variable 21
7. Fonction $f : x \mapsto e^{2x} - (x + 1)e^x$ 21
8. Courbe de Gauss ... 22
9. Fonction $f : x \mapsto e^{x - \sqrt{x}}$.. 23
10. Fonction $f : x \mapsto \sqrt{x}e^x$.. 23
11. Fonction $f_k : x \mapsto \ln (e^x + kx) - x$ 23
12. Fonction $f : x \mapsto (x - 1)(2 - e^{-x})$ 24
13. Fonction $f(x) = (2x + 1)e^{-x}$... 25
14. Fonction $f : x \mapsto e^{x - e^{-x}}$.. 26

III Logarithme népérien .. 42

1. Simplification d’écritures ... 42
2. Équations .. 42
3. Inéquations .. 42
4. Limites ... 43
5. Limites ... 43
III.6 Démonstration de cours : \[\lim_{x \to +\infty} \frac{\ln x}{x} \] .. 43

III.7 Calculs de dérivées ... 44

III.8 Fonction \(f : x \mapsto \frac{\ln(x^2+1)}{x^2+1} \) sans consignes .. 44

III.9 Fonction \(f : x \mapsto \ln \left(1 + \frac{1}{x} \right) \) .. 44

III.10 Fonction \(f : x \mapsto (x + 1) \ln(x^2 - 2x + 1) \) .. 44

III.11 Comparaison de \(\pi^e \) et \(e^\pi \) .. 45

III.12 Concentration de bactéries dans le corps .. 45

III.13 Fonction \(f : x \mapsto (x^2 + 1) \ln x - x \) .. 46

III.14 Équation \(e^x - \ln x = 0 \) .. 47

III.15 Étude de la fonction \(f(x) = \frac{\ln x + x}{x^2} \) .. 47

III.16 Fonction \(f : x \mapsto \frac{2\ln x}{(\ln x)^2 + 1} \) avec intégrale à la fin 48

III.17 Étude de la fonction \(f(x) = \frac{x \ln x}{x^2 + 1} \) .. 49

IV Suites .. 74

IV.1 Suite définie par \(u_{n+1} = u_n + 2n + 3 \) .. 74

IV.2 Suite définie par \(u_{n+1} = \frac{1}{2} u_n \) .. 74

IV.3 Suite définie par \(u_{n+1} = f(u_n) \) avec \(f(x) = \frac{x^2 + 1}{x^2 + 1} \) 74

IV.4 Suite définie par \(u_{n+1} = f(u_n) \) avec \(f(x) = \frac{x^2 + 6}{x^2 + 4x} \) 75

IV.5 Suite définie par \(u_{n+1} = f(u_n) \) avec \(f(x) = \frac{x^2 + 6}{4x^2} \) 75

IV.6 Suite définie par \(u_{n+1} = \frac{1}{2} u_n + 2n - 1 \) .. 76

IV.7 Démonstration par récurrence : \[\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] .. 76

IV.8 Étude générale des suites de la forme \(u_{n+1} = \lambda u_n + P(n) \) 76

IV.9 Suite définie par \(u_{n+1} = \frac{1}{2} u_n - \frac{2}{3} \) .. 77

IV.10 Calcul de la limite de \(\frac{n + \cos(n)}{n^2} \) .. 77

IV.11 Suites imbriquées ... 77

IV.12 Des suites dans les probabilités .. 78

IV.13 Étude d’une fonction \(\ln \) et suite extraite .. 79

IV.14 Étude générale des suites imbriquées .. 80

IV.15 Suite définie par \(u_{n+1} = ku_n (1 - u_n) \) .. 81

IV.16 Suite \((\alpha_n) \) de solution d’équations .. 82

IV.17 La puce (probabilités et suites) .. 82

IV.18 Équation \(e^x = \frac{1}{2} \) .. 83

IV.19 Suite de points, suites imbriquées .. 84

IV.20 Méthode de Newton ... 85

IV.21 L’escargot de Gardner ... 86

V Trigonométrie ... 116

V.1 Équations trigonométriques ... 116

V.2 Équations avec changement de variable .. 116

V.3 Inéquations avec changement de variable .. 116

V.4 Inéquations trigonométriques ... 117

V.5 Calcul de limites ... 117

V.6 Encadrement de \(\cos x \) .. 117

V.7 Étude de la fonction \(x \mapsto \frac{\cos x}{1 + \sin x} \) .. 117

V.8 Fonction \(x \mapsto \cos^3 x \cos(3x) \) .. 118

V.9 Fonction \(x \mapsto \sin^3 x \cos(3x) \) .. 118

V.10 D’après un sujet de bac, Nouvelle Calédonie 2005 .. 119
VI Probabilités

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.1 Une histoire de QCM, Amérique du Sud 2009</td>
<td>136</td>
</tr>
<tr>
<td>VI.2 Sacs défectueux, La Réunion 2009</td>
<td>136</td>
</tr>
<tr>
<td>VI.3 MP3 défectueux, Polynésie 2009</td>
<td>137</td>
</tr>
<tr>
<td>VI.4 Une école à trois classes</td>
<td>138</td>
</tr>
<tr>
<td>VI.5 Agence LOCAR</td>
<td>138</td>
</tr>
<tr>
<td>VI.6 Urne et variable aléatoire</td>
<td>139</td>
</tr>
<tr>
<td>VI.7 Urne et fonction rationnelle</td>
<td>139</td>
</tr>
<tr>
<td>VI.8 Jeanne et son portable</td>
<td>140</td>
</tr>
<tr>
<td>VI.9 Ordinateur et automobile chez les étudiants</td>
<td>140</td>
</tr>
<tr>
<td>VI.10 Enquête dans un journal</td>
<td>141</td>
</tr>
</tbody>
</table>

VII Nombres complexes

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII.1 Calculs algébriques</td>
<td>149</td>
</tr>
<tr>
<td>VII.2 Simplification de quotients</td>
<td>149</td>
</tr>
<tr>
<td>VII.3 Équations quadratiques</td>
<td>149</td>
</tr>
<tr>
<td>VII.4 Équations quadratiques (résultat général)</td>
<td>149</td>
</tr>
<tr>
<td>VII.5 Application $z \mapsto \frac{z^2}{1-z}$</td>
<td>149</td>
</tr>
<tr>
<td>VII.6 De la forme algébrique à la form exponentielle</td>
<td>150</td>
</tr>
<tr>
<td>VII.7 Ensemble de points</td>
<td>150</td>
</tr>
<tr>
<td>VII.8 Application complexe $f(z) = \frac{z^2+1}{z+2i}$</td>
<td>151</td>
</tr>
<tr>
<td>VII.9 Racines n-ièmes de l’unité</td>
<td>151</td>
</tr>
<tr>
<td>VII.10 Calcul des valeurs exactes $\cos\frac{\pi}{5}$, $\cos\frac{2\pi}{5}$ et $\cos\frac{4\pi}{5}$</td>
<td>152</td>
</tr>
<tr>
<td>VII.11 Théorème de Van Aubel</td>
<td>152</td>
</tr>
<tr>
<td>VII.12 Point de Vecten</td>
<td>153</td>
</tr>
<tr>
<td>VII.13 Théorème de Napoléon</td>
<td>154</td>
</tr>
<tr>
<td>VII.14 Équation à coefficients complexes et application</td>
<td>155</td>
</tr>
<tr>
<td>VII.15 Construction d’un pentagone régulier</td>
<td>156</td>
</tr>
<tr>
<td>VII.16 Cocyclicité</td>
<td>156</td>
</tr>
<tr>
<td>VII.17 Application $z \mapsto \frac{z}{1+z}$</td>
<td>157</td>
</tr>
</tbody>
</table>

VIII Intégrales

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII.1 Décomposition en éléments simples de $f(x) = \frac{1}{x^3-2x^2-5x+6}$</td>
<td>179</td>
</tr>
<tr>
<td>VIII.2 Trouver le cercle</td>
<td>179</td>
</tr>
<tr>
<td>VIII.3 Volume d’un bouchon de pêche</td>
<td>179</td>
</tr>
<tr>
<td>VIII.4 Suite et intégrale : $I_n = \int_0^1 \frac{e^{nx}}{e^x+1} , dx$</td>
<td>180</td>
</tr>
<tr>
<td>VIII.5 Intégrale et suite définie par $u_n = \frac{\ln(n!)}{\ln(n^n)}$</td>
<td>180</td>
</tr>
<tr>
<td>VIII.6 Suite définie par une intégrale</td>
<td>180</td>
</tr>
<tr>
<td>VIII.7 $\int_0^\pi e^{-nx} \sin x , dx$ et $\int_0^\pi e^{-nx} \cos x , dx$</td>
<td>181</td>
</tr>
<tr>
<td>VIII.8 $\phi(x) = \int_1^x \frac{\ln t}{(1+t)^3} , dt$</td>
<td>181</td>
</tr>
<tr>
<td>VIII.9 Approximation d’une aire</td>
<td>182</td>
</tr>
<tr>
<td>VIII.10 Intégrale et fonction exponentielle</td>
<td>183</td>
</tr>
<tr>
<td>VIII.11 Suite et intégrale</td>
<td>183</td>
</tr>
</tbody>
</table>
IX Lois continues .. 196
IX.1 Feu tricolore .. 196
IX.2 À la caisse d’un supermarché ... 196
IX.3 Temps de trajet .. 197
IX.4 La partie de jeu vidéo .. 197
IX.5 La livraison à domicile ... 197
IX.6 Paradoxe de Bertrand ... 198
IX.7 La rencontre .. 198
IX.8 L’aiguille de Buffon .. 198
IX.9 Polynésie, 2004 .. 199
IX.10 Liban, 2006 ... 199
IX.11 Amérique du sud, 2005 .. 199
IX.12 Le chauffe-eau (avec loi normale et intervalle de fluctuation) 200
IX.13 D’après Bac France métropolitaine, 2004 .. 201
IX.14 Vaches laitières de race « Française Frisonne Pis Noir » 201
IX.15 Test de conformité ... 202
IX.16 Les premiers mots de la vie .. 202
IX.17 Tests de Q.I. ... 202
IX.18 Durée de vie d’un appareil ... 203

X Géométrie dans l’espace ... 215
X.1 Coplanarité ... 215
X.2 Section d’un cube par un plan ... 215
X.3 Section d’un cube par un plan ... 215
X.4 Représentations paramétriques de droites ... 217
X.5 Droites confondues ... 217
X.6 Récapitulatif ... 217
X.7 Intersection de plans .. 218
X.8 Dans un cube .. 218
X.9 Polynésie, 2010 ... 219

XI Enseignement de spécialité : arithmétique .. 231
XI.1 Critère de divisibilité .. 231
XI.2 Avec une somme géométrique ... 231
XI.3 Divisibilité par 2 et 3 ... 231
XI.4 Divisibilité par 8 .. 231
XI.5 Reste de la division euclidienne par 11 ... 231
XI.6 Critère de divisibilité par 7 sans calculatrice ... 232
XI.7 Divisibilité par 10 et 20 .. 232
XI.8 Calcul d’un maximum ... 232
XI.9 Nombres premiers entre eux ... 232
XI.10 Nombres premiers entre eux .. 232
XI.11 Nombre premier .. 232
XI.12 Nombres premiers .. 232
XI.13 31x − 28y = 1 .. 233
XI.14 108x + 55y = 1 .. 233
XI.15 Trouver le nombre d’hommes et de femmes ... 233
XI.16 Avec la notion de pgcd .. 233
XI.17 Nombres premiers entre eux .. 233
XI.18 Avec une équation diophantienne .. 233
XI.19 Divisibilité ... 233
XI.20 Divisibilité de $a^6 - b^6$ par 3 234
XI.21 Reste d’une division par 7 234
XI.22 Reste d’une division par 7 (bis) 234
XI.23 Reste d’une division par 14 234
XI.24 Reste d’une division par 7 (ter) 234
XI.25 Nombre premier et congruences 234
XI.26 Divisibilité et congruences 234
XI.27 PGCD et congruences 234
XI.28 Combo de congruences 234
XI.29 Équation $x^2 \equiv -11 \mod 100$ 235
XI.30 Par récurrence 235
XI.31 $2^{2n} + 15n - 1$ modulo 9 235
XI.32 Suites et congruences 235
XI.33 $\sum_{p=1}^{n} p^3$ et pgcd 235
XI.34 Théorème des restes chinois 236
XI.35 Le « petit » théorème de Fermat 236

XII Enseignement de spécialité : Matrices 254
XII.1 Opérations élémentaires 254
XII.2 À la recherche d’une matrice 254
XII.3 Puissance d’une matrice et raisonnement par récurrence 254
XII.4 Équation $X^2 = I_2$ 255
XII.5 Puissance d’une matrice 3×3 255
XII.6 Puissance d’une matrice 3×3 255
XII.7 Puissance d’une matrice 3×3 255
XII.8 Avec une matrice nilpotente 255
XII.9 Diagonalisation d’une matrice 256
XII.10 Triangularisation d’une matrice 256
XII.11 Matrice inverse 256
XII.12 Résolutions de systèmes linéaires 257
XII.13 Suites imbriquées et matrices 257
XII.14 Puissance d’une matrice 3×3 257
XII.15 Système de suites 258
XII.16 Suites imbriquées 258
Bonjour.

J’ai souhaité créé ici un document dans lequel il est facile de naviguer. C’est la raison pour laquelle :

- À chaque énoncé d’exercices, vous pouvez cliquer sur le numéro de la page où se trouve le corrigé pour vous y rendre directement ;
- À tout moment, vous pouvez retourner au sommaire en cliquant sur le petit carré ■ qui se trouve devant chaque titre.

D’autre part, il se peut que quelques erreurs se soient glissées dans les énoncés ou corrections ; si vous avez un doute, n’hésitez pas à me contacter via le formulaire qui se trouve sur mon site (http://www.mathweb.fr/contact.html) afin d’aboutir à un document tendant vers la perfection...

Je vous remercie par avance et vous souhaite un bon travail !

Stéphane Pasquet

N.B. Ce document n’est pas nécessairement complet à l’heure actuelle (je pense surtout aux chapitres de spécialité). En fonction de mes cours, je le compléterai au fil du temps.
Ce document repose sur trois extensions personnelles :

- pas-exos.sty
- pas-echant.mod.tex
- pas-algo.sty

tous les trois disponibles gratuitement sur la page :

http://www.mathweb.fr/latex-packages-personnels.html
de mon site.

Il fait aussi appel à tkz-euclide.sty, mais il faut modifier ce fichier afin qu’il n’y ait pas d’erreur de compilation : ouvrez ce fichier sty, puis ajoutez les lignes (si elles ne sont pas déjà écrites) :

\input{tkz-obj-angles} \input{tkz-obj-sectors}

avant la ligne :

\endinput

Il a été initialement rédigé sous Ubuntu, mais dernièrement compilé sous Windows 10.
Vous aurez besoin de GIAC Xcas pour les calculs sur les échantillonnages, ainsi que Gnuplot pour certains tracés de courbes.

Utilisateurs de Windows : vérifiez que C:\xcas\ et C:\Program Files (x86)\gnuplot \ apparait bien dans le PATH (tapez « invite de commandes » dans la barre de recherche, lancez le terminal, puis tapez « path » et validez. Si ce chemin ne figure pas dans le PATH,

- tapez « variables d’environnement » dans la barre de recherche et sélectionnez « Modifier les variables d’environnement système »
- cliquez ensuite sur le bouton « Variables d’environnement » en bas de la fenêtre qui apparaît ;
- sous « variables système », il y a une fenêtre dans laquelle apparaît une ligne commençant par « Path » : sélectionnez-là puis cliquer sur le bouton « Modifier » ;
- ajoutez « C:\xcas\;C:\Program Files (x86)\gnuplot \ » en fin de ligne.
- Il vous faudra redémarrer le système pour que ce changement soit pris en compte.
Calculs de limites

■ Exercice 1. Calculs élémentaires en $+\infty$
(Source : ts-contder-07)

Calculer la limite des fonctions suivantes en $+\infty$.

1. $f(x) = x^3 + 4x^2 - 5x + 1$
2. $g(x) = \sqrt{x^2 + 2x + 3}$
3. $h(k) = \sin \left(\frac{1}{x} \right)$
4. $k(x) = \frac{x^2 + 1}{\sin \frac{1}{x}}$

■ Exercice 2. En $+\infty$ avec des formes indéterminées
(Source : ts-contder-08)

Calculer les limites suivantes.

1. $\lim_{x \to +\infty} \frac{2x^2 - 5x + 3}{3x^2 + 4x - 1}$
2. $\lim_{x \to +\infty} \left(\frac{\sqrt{x^2 + 1}}{2x + 3} \right)$
3. $\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - \sqrt{x^2 + 1} \right)$
4. $\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - \sqrt{x + 1} \right)$

■ Exercice 3. En un nombre fini avec des formes indéterminées
(Source : ts-contder-09)

Calculer les limites suivantes.

1. $\lim_{x \to 1} \frac{\sqrt{x^2 - 1}}{x - 1}$
2. $\lim_{x \to 2} \frac{\sqrt{x^2 + x - 2} - 2}{x - 2}$
3. $\lim_{x \to \pi} \frac{\cos x + 1}{x - \pi}$
4. $\lim_{x \to 1} \frac{\sqrt{x + 1} - \sqrt{2}}{x - 1}$
Exercice 4. Règle de l'Hôpital
(Source : ts-contder-10)

Soient \(f \) et \(g \) deux fonctions définies et dérivables en un nombre réel \(a \) telles que \(f(a) = g(a) = 0 \) et \(g'(a) \neq 0 \).

1. Montrer que \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)} \).

 On pourra considérer le taux d’accroissement des fonctions \(f \) et \(g \) en \(x = a \).

2. Application : calculer \(\lim_{x \to 0} \frac{\cos(5x) - \cos(3x)}{\sin(4x) - \sin(3x)} \).

Étude générale de fonctions

Exercice 5. Fonction \(f : x \mapsto \frac{2x - \sqrt{x}}{2 + \sqrt{x}} \)
(Source : ts-contder-01)

On considère la fonction \(f \) définie sur \([0 ; +\infty[\) par :

\[f(x) = \frac{2x - \sqrt{x}}{2 + \sqrt{x}}. \]

1. Calculer \(\lim_{x \to +\infty} f(x) \).

2. a. Montrer que sa dérivée est définie sur \([0 ; +\infty[\) par :

\[f'(x) = \frac{x + 4\sqrt{x} - 1}{\sqrt{x}(2 + \sqrt{x})^2}. \]

b. Résoudre l’équation :

\[X^2 + 4X - 1 = 0, \]

puis en déduire le signe de \(f'(x) \) ainsi que les variations de \(f \) sur \([0 ; +\infty[\).

Dresser alors un tableau de variations complet de la fonction \(f \) sur \([0 ; +\infty[\).

On veillera notamment à calculer la valeur de l’extrénum de \(f \).

Exercice 6. Fonctions \(f : x \mapsto \sqrt{x^2 + 1} - 2x \) et \(g : x \mapsto \frac{x}{\sqrt{x^2 + 1}} \)
(Source : ts-contder-02)

On considère les fonctions \(f \) et \(g \) définies sur \(\mathbb{R} \) par :

\[f(x) = \sqrt{x^2 + 1} - 2x ; \quad g(x) = \frac{x}{\sqrt{x^2 + 1}}. \]

1. Montrer que \(g'(x) = \frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}. \)

 En déduire le sens de variations de \(g \) sur \(\mathbb{R} \).

2. Calculer \(\lim_{x \to -\infty} g(x) \) et \(\lim_{x \to +\infty} g(x) \).
3 Montrer que $f'(x) = g(x) - 2$.
En déduire le signe de $f'(x)$ puis les variations de f sur \mathbb{R}.

4 Montrer que l’équation $f(x) = 0$ admet une unique solution α sur $[0;1]$, puis déterminer une valeur approchée de α à 10^{-2} près.

Exercice 7. Prolongement par continuité de $f : x \mapsto \frac{x-2}{\sqrt{4-x}-2}$ en 2
(Source : ts-contder-03)
On considère la fonction f définie sur $\mathcal{D} =]-\infty ; 0[\cup [0 ; 4]$ par :

\[\begin{cases}
 f(x) = \frac{x-2}{\sqrt{4-x}-2} \\
 f(2) = 0
\end{cases} \]

1 La fonction f est-elle continue en 0 ?
2 La fonction f est-elle continue en 2 ?
3 Étudier la dérivarbilité de la fonction f sur \mathcal{D}.
4 Interpréter graphiquement les résultats des questions 1 et 3.

Exercice 8. Prolongement par continuité de $f : x \mapsto \frac{\sqrt{x^2+x+2}-2}{x-1}$ en 1
(Source : ts-contder-04)
On considère la fonction f définie par :

\[f(x) = \begin{cases}
 \frac{\sqrt{x^2+x+2}-2}{x-1} & \text{si } x \neq 1 \\
 3/4 & \text{si } x = 1
\end{cases} \]

1 f est-elle continue en 1 ?
2 f est-elle dérivable en 1 ?
3 Justifier que f est dérivable pour tout $x \neq 1$.

Exercice 9. Étude de la fonction $f : x \mapsto \frac{|2x^2-x-1|}{\sqrt{1-x^2}}$
(Source : ts-contder-05)
On considère la fonction f définie sur]−1 ; 1[par :

\[f(x) = \frac{|2x^2-x-1|}{\sqrt{1-x^2}}. \]

1 La fonction f est-elle continue en 1 ?
2 La fonction f est-elle continue en −1 ?
3 La fonction f est-elle dérivable en 1 ?
La fonction f est-elle dérivable en -1 ?

La fonction f est-elle dérivable en $-\frac{1}{2}$?

a. Montrer que, sur $]-1; -\frac{1}{2}[$, la dérivée de f s'exprime par: $f'(x) = \frac{-2x^3 + 3x - 1}{(1-x^2)\sqrt{1-x^2}}$.

b. En déduire le signe de $f'(x)$, puis les variations de f sur $]-1; -\frac{1}{2}[$.

a. Montrer que, sur $]-\frac{1}{2}; 1[$, la dérivée de f s'exprime par: $f'(x) = \frac{2x^3 - 3x + 1}{(1-x^2)\sqrt{1-x^2}}$.

b. En déduire le signe de $f'(x)$, puis les variations de f sur $]-\frac{1}{2}; 1[$.

Dresser un tableau de variations complet de f sur $]-1; 1[$. Tracer alors la courbe représentative de f en mettant en valeur les tangentes et asymptotes caractéristiques.

Exercice 10. Approximation d'un angle par la longueur d'un segment

On se propose ici de trouver une méthode pour donner une valeur approchée d'un angle (en degrés) sans le rapporteur.

On considère donc un angle géométrique \hat{AOB}, puis un point M sur (OB) tel que $OM = 60$ mm et un point N sur (OA) tel que $OA = 60$ mm.

On considère alors le point I, projeté orthogonal de O sur (MN).

1. Justifier que OAB est isocèle en O.

2. Montrer que:

$$\sin\left(\frac{\pi}{360}\alpha\right) = \frac{MN}{120},$$

où MN est exprimée en mm.

3. On considère la fonction f définie sur $\left[0; \frac{\pi}{2}\right]$ par $f(x) = x - \sin x$.

a. Calculer la dérivée $f'(x)$ de $f(x)$.

b. En déduire que sur $\left[0; \frac{\pi}{2}\right]$, $f(x) \in \left[0; \frac{\pi}{2} - 1\right]$.

c. Expliquer alors pourquoi, pour $x \in \left[0; \frac{\pi}{2}\right]$, on peut remplacer $\sin x$ par x au risque de commettre une erreur inférieure à 1.

4. En déduire que l'on peut assimiler α (en degrés) à MN (en mm).

Il suffit donc de mesurer MN pour avoir une approximation de α en degrés.

5. À l'aide de la formule d’Al-Kashi, exprimer l’expression de la fonction g qui représente la longueur MN en fonction de α.

On pose alors $d(\alpha) = g(\alpha) - \alpha$.

6. Tracer la courbe représentative de d dans un repère orthogonal. Que conclure ?
Corrigé de l'exercice 1.

1. \(f(x) = x^3 + 4x^2 - 5x + 1 \)
 \[= x^3 \left(1 + \frac{4}{x} - \frac{5}{x^2} + \frac{1}{x^3} \right) \]
 Or, pour tout entier naturel n non nul, \(\lim_{x \to +\infty} \frac{1}{x^n} = 0 \) donc \(\lim_{x \to +\infty} \left(1 + \frac{4}{x} - \frac{5}{x^2} + \frac{1}{x^3} \right) = 1. \)
 De plus, \(\lim_{x \to +\infty} x^3 = +\infty \) donc par produit, \(\lim_{x \to +\infty} f(x) = +\infty. \)

2. \(g(x) = \sqrt{x^2 + 2x + 3} \)
 \[= x \sqrt{1 + \frac{2}{x} + \frac{3}{x^2}} \]
 pour \(x > 0 \)
 Or, pour tout entier naturel n non nul, \(\lim_{x \to +\infty} \frac{1}{x^n} = 0 \) donc \(\lim_{x \to +\infty} \left(1 + \frac{2}{x} + \frac{3}{x^2} \right) = 1. \)
 Donc, par produit, \(\lim_{x \to +\infty} g(x) = +\infty. \)

3. \(\lim_{x \to +\infty} \frac{1}{x} = 0 \) pour tout entier naturel n non nul, \(\lim_{x \to +\infty} \frac{1}{x^n} = 0 \) donc \(\lim_{x \to +\infty} \left(1 + \frac{2}{x} + \frac{3}{x^2} \right) = 1. \)

4. \(\lim_{x \to +\infty} \frac{x^2 + 1}{x} = +\infty \) pour tout entier naturel n non nul, \(\lim_{x \to +\infty} \frac{1}{x} = 0^+ \) donc \(\lim_{x \to +\infty} \left(1 + \frac{2}{x} + \frac{3}{x^2} \right) = 1. \)
 \[\Rightarrow \text{par quotient :} \lim_{x \to +\infty} k(x) = +\infty. \]

Corrigé de l'exercice 2.

1. \(\frac{2x^2 - 5x + 3}{3x^2 + 4x - 1} = \frac{x^2 \left(2 - \frac{5}{x} + \frac{3}{x^2} \right)}{x^2 \left(3 + \frac{4}{x} - \frac{1}{x^2} \right)} \)
 \[= \frac{2 - \frac{5}{x} + \frac{3}{x^2}}{3 + \frac{4}{x} - \frac{1}{x^2}} \]
 pour \(x > 0 \)
Or, pour tout entier naturel non nul \(n \), \(\lim_{x \to +\infty} \frac{1}{x^n} = 0 \) donc \(\lim_{x \to +\infty} \left(2 - \frac{5}{x} + \frac{3}{x^2} \right) = 2 \) et
\[
\lim_{x \to +\infty} \left(3 + \frac{4}{x} - \frac{1}{x^2} \right) = 3.
\]
Ainsi, par quotient, \(\lim_{x \to +\infty} \frac{2x^2 - 5x + 3}{3x^2 + 4x - 1} = \frac{2}{3} \).

2 \[
\frac{\sqrt{x^2 + 1}}{2x + 3} = \frac{\sqrt{x^2} \left(1 + \frac{1}{x^2} \right)}{x \left(x + \frac{3}{x} \right)} = \frac{x \sqrt{1 + \frac{1}{x^2}}}{x \left(2 + \frac{3}{x} \right)} \quad \text{pour} \ x > 0
\]
\[
= \frac{\sqrt{1 + \frac{1}{x^2}}}{\left(2 + \frac{3}{x} \right)}
\]
Or, pour tout entier naturel non nul \(n \), \(\lim_{x \to +\infty} \frac{1}{x^n} = 0 \) donc \(\lim_{x \to +\infty} \sqrt{1 + \frac{1}{x^2}} = \sqrt{1} = 1 \) et
\[
\lim_{x \to +\infty} \left(2 + \frac{3}{x} \right) = 2.
\]
Par quotient, on a donc \(\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{2x + 3} = \frac{1}{2} \).

3 \[
\sqrt{x^2 + 3} - \sqrt{x^2 + 1} = \frac{\left(\sqrt{x^2 + 3} - \sqrt{x^2 + 1} \right) \left(\sqrt{x^2 + 3} + \sqrt{x^2 + 1} \right)}{\sqrt{x^2 + 3} + \sqrt{x^2 + 1}}
\]
\[
= \frac{x^2 + 3 - (x^2 + 1)}{\sqrt{x^2 + 3} + \sqrt{x^2 + 1}} = \frac{2}{\sqrt{x^2 + 3} + \sqrt{x^2 + 1}}
\]
\[
\lim_{x \to +\infty} \sqrt{x^2 + 3} = \lim_{x \to +\infty} \sqrt{x^2 + 1} = +\infty \text{ donc par somme :} \lim_{x \to +\infty} \left(\sqrt{x^2 + 3} + \sqrt{x^2 + 1} \right) = +\infty.
\]
Ainsi, par quotient, \(\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - \sqrt{x^2 + 1} \right) = 0 \)

4 \[
\left(\sqrt{x^2 + 3} - \sqrt{x + 1} \right) = \left(\sqrt{x^2} \left(1 + \frac{3}{x^2} \right) - \sqrt{x^2} \left(\frac{1}{x} + \frac{1}{x^2} \right) \right)
\]
\[
= x \sqrt{1 + \frac{3}{x^2}} - x \sqrt{\frac{1}{x} + \frac{1}{x^2}} \quad \text{pour} \ x > 0
\]
\[
= x \left(\sqrt{1 + \frac{3}{x^2}} - \sqrt{\frac{1}{x} + \frac{1}{x^2}} \right)
\]
Or, \(\lim_{x \to +\infty} \sqrt{\frac{1 + \frac{3}{x^2}}{x^2}} = 1 \) et \(\lim_{x \to +\infty} \sqrt{\frac{1 + \frac{2}{x}}{x^2}} = 0 \) donc par somme :
\[
\lim_{x \to +\infty} \left(\sqrt{1 + \frac{3}{x^2}} - \frac{1 + \frac{2}{x}}{x^2} \right) = 1.
\]
Ainsi, par produit, \(\lim_{x \to +\infty} \left(\sqrt{x^2 + 3} - \sqrt{x + 1} \right) = +\infty \)

Corrigé de l’exercice 3.

1. \[
\frac{\sqrt{x^2 - 1}}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = \frac{(x - 1) \times (x + 1)}{(\sqrt{x - 1})^2} = \frac{\sqrt{x + 1}}{\sqrt{x - 1}} \text{ pour } x \neq 1
\]

Notons que le domaine de définition de la fonction \(x \mapsto \frac{\sqrt{x^2 - 1}}{x - 1} \) est \([-\infty ; -1] \cup]1 ; +\infty[\) donc quand on parle de la limite de \(\frac{\sqrt{x^2 - 1}}{x - 1} \) en 1, il est sous-entendu que \(x > 1 \).

\[
\lim_{x \to 1} (x + 1) = 2 \quad \lim_{x \to 1} (x - 1) = 0^+
\]

\[\Rightarrow\] par quotient : \(\lim_{x \to 1} \frac{x + 1}{x - 1} = +\infty \)

Or, \(\lim_{x \to +\infty} \sqrt{X} = +\infty \) donc \(\lim_{x \to 1} \frac{\sqrt{x^2 - 1}}{x - 1} = +\infty \)

2. \[
\frac{\sqrt{x^2 + x - 2} - 2}{x - 2} = \frac{(\sqrt{x^2 + x - 2} - 2)(\sqrt{x^2 + x - 2} + 2)}{(x - 2)(\sqrt{x^2 + x - 2} + 2)}
\]

\[
= \frac{x^2 + x - 2 - 4}{(x - 2)(\sqrt{x^2 + x - 2} + 2)}
\]

\[
= \frac{x^2 + x - 6}{(x + 2)(\sqrt{x^2 + x - 2} + 2)}
\]

On factorise \(x^2 + x - 6 \) en calculant son discriminant et on arrive à :

\[
= \frac{(x - 2)(x + 3)}{(x + 2)(\sqrt{x^2 + x - 2} + 2)}
\]

\[
= \frac{x + 3}{\sqrt{x^2 + x - 2} + 2} \text{ pour } x \neq 2
\]

\[
\lim_{x \to 2} \frac{x + 3}{\sqrt{x^2 + x - 2} + 2} = \frac{2 + 3}{\sqrt{2^2 + 2 - 2} + 2} = \frac{5}{4}
\]

Ainsi, \(\lim_{x \to 2} \frac{\sqrt{x^2 + x - 2} - 2}{x - 2} = \frac{5}{4} \)
3 On pose \(u(x) = \cos x \). Alors, \(u'(x) = -\sin x \) et :
\[
\lim_{x \to \pi} \frac{\cos x + 1}{x - \pi} = \lim_{x \to \pi} \frac{u(x) - u(\pi)}{x - \pi} = u'(\pi) = -\sin \pi = 0.
\]
Ainsi, \[\boxed{\lim_{x \to \pi} \frac{\cos x + 1}{x - \pi} = 0}\]

4 On pose \(u(x) = \sqrt{x+1} \). Alors, \(u'(x) = \frac{1}{2\sqrt{x+1}} \) et :
\[
\lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2}}{x - 1} = \lim_{x \to 1} \frac{u(x) - u(1)}{x - 1} = u'(1) = \frac{1}{2\sqrt{2}}.
\]
Ainsi, \[\boxed{\lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2}}{x - 1} = \frac{1}{2\sqrt{2}}}\]

Corrigé de l’exercice 4.

1 On peut écrire :
\[
\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{x - a} \times \frac{x - a}{g(x) - g(a)}
\]
car \(f(a) = g(a) = 0 \).
Or, \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) \) d’après la définition du nombre dérivé (vue en classe de 1re).
De même, \(\lim_{x \to a} \frac{g(x) - g(a)}{x - a} = g'(a) \) donc \(\lim_{x \to a} \frac{x - a}{g(x) - g(a)} = \frac{1}{g'(a)} \) (quotient qui existe car \(g'(a) \neq 0 \)).
Ainsi,
\[
\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \times \frac{x - a}{g(x) - g(a)} = f'(a) \times \frac{1}{g'(a)}
\]
et donc :
\[\boxed{\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}}\]

2 Posons \(f(x) = \cos(5x) - \cos(3x) \) et \(g(x) = \sin(4x) - \sin(3x) \).
Alors, \(f'(x) = -5\sin(5x) + 3\sin(3x) \) et \(g'(x) = 4\cos(4x) - 3\cos(3x) \). Ainsi, \(f'(0) = 0 \) et \(g'(0) = 1 \).
\(f \) et \(g \) vérifient toutes les conditions nécessaires pour utiliser la règle de l’Hôpital donc :
\[\boxed{\lim_{x \to 0} \frac{\cos(5x) - \cos(3x)}{\sin(4x) - \sin(3x)} = 0}\]
Corrigé de l'exercice 5.

1. On peut écrire \(f(x) \) sous la forme :

\[
f(x) = \frac{\sqrt{x} \left(2\sqrt{x} - 1\right)}{\sqrt{x} \left(\frac{2}{\sqrt{x}} + 1\right)}
= \frac{2\sqrt{x} - 1}{\frac{2}{\sqrt{x}} + 1}
\]

Or,

- \(\lim_{x \to +\infty} (2\sqrt{x} - 1) = +\infty \)
- \(\lim_{x \to +\infty} \frac{2}{\sqrt{x}} = 0 \) donc \(\lim_{x \to +\infty} \left(\frac{2}{\sqrt{x}} + 1\right) = 1 \)

Ainsi, par quotient,

\[
\lim_{x \to +\infty} f(x) = +\infty
\]

2. \(f \) est de la forme \(\frac{u}{v} \) avec :

\[
\begin{align*}
u(x) &= 2x - \sqrt{x} \\
u'(x) &= 2 - \frac{1}{2\sqrt{x}}
\end{align*}
\begin{align*}
v(x) &= 2 + \sqrt{x} \\
v'(x) &= \frac{1}{2\sqrt{x}}
\end{align*}
\]

D'où :

\[
f'(x) = \frac{u'v - uv'}{v^2}(x)
= \frac{(2 - \frac{1}{2\sqrt{x}})(2 + \sqrt{x}) - (2x - \sqrt{x}) \times \frac{1}{2\sqrt{x}}}{(2 + \sqrt{x})^2}
= \frac{(4\sqrt{x} - 1)(2 + \sqrt{x}) - (2x - \sqrt{x})}{2\sqrt{x}(2 + \sqrt{x})^2}
= \frac{8\sqrt{x} + 4x - 2 - \sqrt{x} - 2x + 2\sqrt{x}}{2\sqrt{x}(2 + \sqrt{x})^2}
= \frac{2x + 8\sqrt{x} - 2}{2\sqrt{x}(2 + \sqrt{x})^2}
\]

\[
f'(x) = \frac{x + 4\sqrt{x} - 1}{\sqrt{x}(2 + \sqrt{x})^2}
\]

en simplifiant par 2

b. Le discriminant du polynôme \(X^2 + 4X - 1 \) est :

\[
\Delta = b^2 - 4ac
= 4^2 - 4 \times 1 \times (-1)
\Delta = 20.
\]

Les deux racines du polynôme sont donc :
\[X_1 = \frac{-4 - \sqrt{20}}{2} = \frac{-4 - 2\sqrt{5}}{2} = -2 - \sqrt{5} \]
\[X_2 = \frac{-4 + \sqrt{20}}{2} = \frac{-4 + 2\sqrt{5}}{2} = -2 + \sqrt{5} \]

D'où le tableau de signe suivant :

<table>
<thead>
<tr>
<th>(X)</th>
<th>(-\infty)</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^2 + 4X - 1)</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

\(f'(x) \) est du signe de \(x + 4\sqrt{x} - 1 \), c'est-à-dire de \(X^2 + 4X - 1 \) en posant \(X = \sqrt{x} \). Ainsi, \(X > 0 \) et \(x = X^2 \); de plus, d'après le tableau de signes précédent,

\[
\begin{align*}
& x + 4\sqrt{x} - 1 > 0 \iff \sqrt{x} > -2 + \sqrt{5} \\
& \iff x > (-2 + \sqrt{5})^2 \\
& \iff x > 9 - 4\sqrt{5}
\end{align*}
\]

D'où le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(9 - 4\sqrt{5})</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>(f)</td>
<td>0</td>
<td>(-9 + 4\sqrt{5})</td>
<td>(+\infty)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
& f \left(9 - 4\sqrt{5} \right) = \frac{2 \left(9 - 4\sqrt{5} \right) - \sqrt{9 - 4\sqrt{5}}}{2 + \sqrt{9 - 4\sqrt{5}}} \\
& = \frac{18 - 8\sqrt{5} - (-2 + \sqrt{5})}{2 - (-2 + \sqrt{5})} \\
& = \frac{20 - 9\sqrt{5}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \\
& = \frac{-45 + 20\sqrt{5}}{5} \\
& = -9 + 4\sqrt{5}.
\end{align*}
\]

Je précise que \(\sqrt{9 - 4\sqrt{5}} = -2 + \sqrt{5} \) d'après les calculs faits précédemment.

\textbf{Corrigé de l'exercice 6.}

1. \(g \) est de la forme \(\frac{u}{v} \), avec \(u(x) = x \) et \(v(x) = \sqrt{x^2 + 1} \).

Ainsi, \(g' = \frac{u'v - uv'}{v^2} \), avec \(u'(x) = 1 \) et \(v'(x) = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}} \).

D'où :
\[\begin{align*}
g'(x) &= \frac{1 \times \sqrt{x^2 + 1} - x \times \frac{x}{\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1}} \\
&= \frac{\sqrt{x^2 + 1} - \frac{x^2}{\sqrt{x^2 + 1}}}{x^2 + 1} \\
&= \frac{(\sqrt{x^2 + 1})^2 - x^2}{x^2 + 1} \\
&= \frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}
\end{align*} \]

\((x^2 + 1) > 0 \) et \(\sqrt{x^2 + 1} > 0 \) donc \(g'(x) > 0 \) sur \(\mathbb{R} \).

Ainsi, \(g \) est strictement croissante sur \(\mathbb{R} \).

2 Notons que la fonction \(g \) est impaire car \(g(-x) = g(x) \) et que son domaine de définition est centré en 0. Donc \(\lim_{x \to -\infty} g(x) = -\lim_{x \to +\infty} g(x) \).

On peut écrire :

\[g(x) = \frac{x}{\sqrt{x^2 \left(1 + \frac{1}{x^2}\right)}} \]
\[= \frac{x}{|x|\sqrt{1 + \frac{1}{x^2}}} \]
\[= \frac{1}{\sqrt{1 + \frac{1}{x^2}}} \quad \text{pour} \ x > 0. \]

Or, \(\lim_{x \to +\infty} \frac{1}{x^2} = 0 \) donc \(\lim_{x \to +\infty} \sqrt{1 + \frac{1}{x^2}} = \sqrt{1} = 1. \)

Par conséquent, \(\lim_{x \to -\infty} g(x) = 1 \) et donc \(\lim_{x \to -\infty} g(x) = -1 \).

3 \[f'(x) = \frac{2x}{2\sqrt{x^2 + 1}} - 2 \]
\[= \frac{x}{\sqrt{x^2 + 1}} - 2 \]
\[f'(x) = g'(x) - 2 \]

Nous avons dit que \(g \) était strictement croissante sur \(\mathbb{R} \) et que \(\lim_{x \to +\infty} g(x) = 1. \) Donc \(g(x) < 1 \) sur \(\mathbb{R} \).

Par conséquent, \(g(x) - 2 < 0 \) sur \(\mathbb{R} \), donc \(f'(x) < 0 \) sur \(\mathbb{R} \).

\(f \) est donc strictement décroissante sur \(\mathbb{R} \).

4 \(f(0) = 1 \) et \(f(1) = \sqrt{2} - 2 < 0. \)

Or, \(f \) est strictement décroissante et continue sur \([0 ; 1]\). Donc, d’après le corollaire du théorème des valeurs intermédiaires, l’équation \(f(x) = 0 \) admet une unique solution \(\alpha \) sur \([0 ; 1]\). On trouve \(\alpha \approx 0,58. \)
Corrigé de l’exercice 7.

1 Calculons \(\lim_{x \to 0} f(x) \). Pour cela, on écrit :

\[
f(x) = \frac{x - 2}{\sqrt{4 - x} - 2} \times \frac{\sqrt{4 - x} + 2}{\sqrt{4 - x} + 2} = \frac{(x - 2)(\sqrt{4 - x} + 2)}{4 - x - 4} = \frac{(x - 2)(\sqrt{4 - x} + 2)}{-x}
\]

\[
\lim_{x \to 0} \left((x - 2) \left(\sqrt{4 - x} + 2 \right) \right) = -8 \\
\lim_{x \to 0} (-x) = 0^{-} \Rightarrow (\text{par quotient}) \lim_{x \to 0^+} f(x) = +\infty
\]

\[
\lim_{x \to 0} \left((x - 2) \left(\sqrt{4 - x} + 2 \right) \right) = -8 \\
\lim_{x \to 0} (-x) = 0^{+} \Rightarrow (\text{par quotient}) \lim_{x \to 0^-} f(x) = -\infty
\]

\[
\lim_{x \to 0} f(x) \neq \lim_{x \to 0} f(x) \text{ donc } f \text{ n’est pas continue en } 0.
\]

2 Calculons \(\lim_{x \to 2} f(x) \).

\[
\lim_{x \to 2} \left((x - 2) \left(\sqrt{4 - x} + 2 \right) \right) = 0^{-} \\
\lim_{x \to 2} (-x) = -2 \Rightarrow (\text{par quotient}) \lim_{x \to 2} f(x) = 0
\]

Ainsi, \(f(2) = \lim_{x \to 2} f(x) \).
La fonction \(f \) est donc continue en 0.

3 La fonction \(x \mapsto x - 2 \) est dérivable sur \(\mathbb{R} \).
La fonction \(x \mapsto \sqrt{4 - x} - 2 \) est dérivable partout où \(4 - x > 0 \), donc pour \(x < 4 \), et s’annule pour \(x = 0 \).
La fonction \(X \mapsto \frac{1}{X} \) est dérivable pour tout \(X \) non nul.
Ainsi, \(f \) est dérivable sur \(]-\infty ; 0[\) et sur \(]0 ; 4[\).

- **Dérivabilité en 4.**

 Le taux d’accroissement de \(f \) en 0 est :

 \[
 \tau(h) = \frac{f(4 - h) - f(4)}{h} = \frac{1}{h} \times \frac{2 - h}{\sqrt{h} - 2} = \frac{1}{h} \times \frac{2 - h}{\sqrt{h} - 2} \times \frac{\sqrt{h} + 2}{\sqrt{h} + 2} = \frac{1}{h} \times \frac{(2 - h)(\sqrt{h} + 2)}{h - 4}
 \]

 Ainsi, \(\lim_{h \to 0} \tau(h) = -\infty \). La fonction \(f \) n’est donc pas dérivable en 4.
- **Dérivabilité en 0.**
 La fonction f n’est pas continue en 0, donc elle n’est pas dérivable en 0.

\[\lim_{x \to 0} f(x) = \pm \infty \] donc la droite d’équation $x = 0$ est une asymptote à la courbe représentative de la fonction f (notée C).

De plus, \(\lim_{h \to 0} \tau(h) = -\infty \) donc C admet une tangente verticale dirigée par le bas en 4.

Corrigé de l’exercice 8.

1. \(f(x) = \frac{\sqrt{x^2 + x + 2} - 2}{x - 1} \cdot \frac{\sqrt{x^2 + x + 2} + 2}{\sqrt{x^2 + x + 2} + 2} \)

\[\bar{\text{=}} \frac{x^2 + x - 2}{(x - 1) \left(\sqrt{x^2 + x + 2} + 2 \right)} \]

\[\bar{\text{=}} \frac{x + 2}{\sqrt{x^2 + x + 2} + 2} \text{ si } x \neq 1 \]

Ainsi, \(\lim_{x \to 1} f(x) = \frac{3}{4} = f(1) \). Donc, f est continue en 1.

2. Le taux d’accroissement de f en 1 est :

\[\tau(x) = \frac{f(x) - f(1)}{x - 1} \]

\[\bar{\text{=}} \frac{\frac{\sqrt{x^2 + x + 2} - 2}{x - 1} - \frac{3}{4}}{x - 1} \]

\[\bar{\text{=}} \frac{4\sqrt{x^2 + x + 2} - (3x + 5)}{4(x - 1)^2} \times \frac{4\sqrt{x^2 + x + 2} + (3x + 5)}{4\sqrt{x^2 + x + 2} + (3x + 5)} \]

\[\bar{\text{=}} \frac{16x^2 + 16x + 32 - 9x^2 - 30x - 25}{4(x - 1)^2 \left(4\sqrt{x^2 + x + 2} + (3x + 5) \right)} \]

\[\bar{\text{=}} \frac{7x^2 - 14x + 7}{4(x - 1)^2 \left(4\sqrt{x^2 + x + 2} + (3x + 5) \right)} \]

\[\bar{\text{=}} \frac{7}{4 \left(4\sqrt{x^2 + x + 2} + (3x + 5) \right)} \]

Ainsi,

\[\lim_{x \to 1} \tau(x) = \frac{7}{16} \]

La limite du taux d’accroissement de f en 1 étant une valeur finie, f est dérivable en 1.

N.B. Je n’ai pas pris l’expression $\tau(h) = \frac{f(1+h) - f(1)}{h}$ car les modifications d’écriture étaient plus longues que celles faites ci-dessus. Vous pouvez toujours essayer ...
La fonction $x \mapsto \sqrt{x^2 + x + 2}$ est dérivable pour tout x où le radicant est strictement positif, ce qui est toujours le cas car le discriminant de $x^2 + x + 2$ est strictement négatif. Ainsi, la fonction $x \mapsto \sqrt{x^2 + x + 2} - 2$ est dérivable sur \mathbb{R}.

La fonction $X \mapsto \frac{1}{X}$ est dérivable sur $]-\infty; 0[$ et sur $]0; +\infty[$ donc la fonction $x \mapsto \frac{1}{x-1}$ est dérivable pour $x \neq 1$.

Par conséquent, la fonction f est dérivable pour $x \neq 1$ comme produit de deux fonctions dérivables pour $x \neq 1$.

Corrigé de l’exercice 9.

1. Considérons le polynôme $P(x) = 2x^2 - x - 1$.
 Son discriminant est :
 $$\Delta = 1 - 4 \times 2 \times (-1) = 9.$$

 Il a donc deux racines :
 $$x_1 = \frac{1 - 3}{4} = -\frac{1}{2},$$
 $$x_2 = \frac{1 + 3}{4} = 1.$$

 D'où le tableau de signes suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>$-\frac{1}{2}$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(x)$</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

 Ainsi, sur $]0; 1[,$
 $$f(x) = \frac{1 + x - 2x^2}{\sqrt{1 - x^2}}$$
 $$= \frac{-2(x - 1)(x + \frac{1}{2})}{\sqrt{1 - x} \times \sqrt{1 + x}}$$
 $$= \frac{-2 \left(x + \frac{1}{2}\right) \times -(1 - x)}{\sqrt{1 + x} \times \sqrt{1 - x}}$$
 $$= \frac{2 \left(x + \frac{1}{2}\right) \sqrt{1 - x}}{\sqrt{1 + x}}$$

 Ainsi, $\lim_{x \to 1} f(x) = 0$. La fonction f est donc continue en 1.

2. $$\lim_{x \to -1} |2x^2 - x - 1| = 4$$ et $$\lim_{x \to -1} \sqrt{1 - x^2} = 0^+.$$

 Ainsi, par quotient, $$\lim_{x \to -1} f(x) = +\infty.$$

 La fonction f n’est donc pas continue en -1.

14
Le taux d’accroissement de la fonction \(f \) en 1 est :

\[
\tau(x) = \frac{f(x) - f(1)}{x - 1} = \frac{-2(x-1)(x+\frac{1}{2})}{\sqrt{1-x^2}} = \frac{-2x-1}{\sqrt{1-x^2}}
\]

\[
\lim_{x \to 1} (-2x - 1) = -3 \text{ et } \lim_{x \to 1} \sqrt{1-x^2} = 0^+ \text{ donc, par quotient, } \lim_{x \to 1} \tau(x) = -\infty.
\]

Ainsi, \(f \) n’est pas dérivable en 1.

\(f \) n’étant pas continue en \(-1\), elle n’est pas dérivable en \(-1\).

\(f \) n’est pas dérivable en \(-\frac{1}{2}\).

\(f \) n’est pas dérivable en \(-\frac{1}{2}\).

\(f \) n’est pas dérivable en \(-\frac{1}{2}\).

\(f \) n’est pas dérivable en \(-\frac{1}{2}\).
\[u(x) = 2x^2 - x - 1 \quad \text{et} \quad v(x) = \sqrt{1 - x^2} \]
\[u'(x) = 4x - 1 \quad \text{et} \quad v'(x) = \frac{-2x}{2\sqrt{1 - x^2}} = \frac{-x}{\sqrt{1 - x^2}} \]

D'où :

\[f'(x) = \frac{u'v - uv'}{v^2} = \frac{(4x - 1)\sqrt{1 - x^2} - \frac{-x(2x^2 - x - 1)}{\sqrt{1 - x^2}}}{1 - x^2} = \frac{(4x - 1)(1 - x^2) + x(2x^2 - x - 1)}{(1 - x^2)\sqrt{1 - x^2}} \]

\[f'(x) = \frac{-2x^3 + 3x - 1}{(1 - x^2)\sqrt{1 - x^2}} \]

b. « 1 » est une racine évidente du polynôme \(-2x^3 + 3x - 1\). Ainsi, ce dernier peut se factoriser sous la forme \((x - 1)(ax^2 + bx + c)\).

Il faut donc que :

\[-2x^3 + 3x - 1 = (x - 1)(ax^2 + bx + c)\]

\[-2x^3 + 3x - 1 = ax^3 + bx^2 + cx - ax^2 - bx - c\]

\[-2x^3 + 3x - 1 = ax^3 + (b - a)x^2 + (c - b)x - c\]

D'où \(a = -2\), \(c = 1\) et donc \(b = -2\).

Ainsi, \(f'(x) = \frac{(x - 1)(-2x^2 - 2x + 1)}{(1 - x^2)\sqrt{1 - x^2}}\).

Le dénominateur de \(f'(x)\) étant toujours strictement positif sur \([-1 ; \frac{1}{2}]\), \(f'(x)\) est du signe de son numérateur.

Le discriminant de \(-2x^2 - 2x + 1\) est \(\Delta = 12\), donc ce dernier a deux racines réelles distinctes :

\[x_1 = \frac{2 - 2\sqrt{3}}{-4} = \frac{-1 + \sqrt{3}}{2} \quad \text{et} \quad x_2 = \frac{-1 - \sqrt{3}}{2} \]

\(x_2 < -1\) et \(x_1 > \frac{-1}{2}\). D'où le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-1)</th>
<th>(-\frac{1}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x - 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-2x^2 - 2x + 1)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(f'(x))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>+\infty</td>
<td>0</td>
</tr>
</tbody>
</table>

\[f \left(-\frac{1}{2} \right) = \frac{2\times \left(-\frac{1}{2} \right)^2 - \left(-\frac{1}{2} \right) - 1}{\sqrt{1 - \left(-\frac{1}{2} \right)^2}} = \frac{\frac{1}{2} + \frac{1}{2} - 1}{\sqrt{\frac{3}{4}}} = 0 \]

7. a. Sur \([-\frac{1}{2}; 1]\), \(P(x) < 0\) donc \(f(x) = \frac{-2x^2 + x + 1}{\sqrt{1 - x^2}}\).

Ainsi, \(f\) est de la forme \(\frac{u}{v}\), avec :

\[u(x) = -2x^2 + x + 1 \quad \text{et} \quad v(x) = \sqrt{1 - x^2} \]

\[u'(x) = -4x + 1 \quad \text{et} \quad v'(x) = \frac{-2x}{2\sqrt{1 - x^2}} = \frac{-x}{\sqrt{1 - x^2}} \]
D'où :

\[f'(x) = \frac{u'v - uv'}{v^2}(x) \]

\[= (-4x + 1)\sqrt{1 - x^2} - \frac{-x(-2x^2 + x + 1)}{(1 - x^2)\sqrt{1 - x^2}} \]

\[= (-4x + 1)(1 - x^2) + x(-2x^2 + x + 1) \]

\[= \frac{2x^3 - 3x + 1}{(1 - x^2)\sqrt{1 - x^2}} \]

\[f'(x) = \frac{2x^3 - 3x + 1}{(1 - x^2)\sqrt{1 - x^2}} \]

b. « 1 » est une racine évidente du polynôme \(2x^3 - 3x + 1 \). Ainsi, ce dernier peut se factoriser sous la forme \((x - 1)(ax^2 + bx + c) \).
Il faut donc que :

\[2x^3 - 3x + 1 = (x - 1)(ax^2 + bx + c) \]

\[= ax^3 + bx^2 + cx - ax^2 - bx - c \]

\[= ax^3 + (b - a)x^2 + (c - b)x - c \]

D'où \(a = 2, c = -1 \) et donc \(b = 2 \).
Ainsi, \(f'(x) = \frac{(x - 1)(2x^2 + 2x - 1)}{(1 - x^2)\sqrt{1 - x^2}} \).
Le dénominateur de \(f'(x) \) étant toujours strictement positif sur \(-1 ; -\frac{1}{2}\], \(f'(x) \) est du signe de son numérateur. Le discriminant de \(2x^2 + 2x - 1 \) est \(\Delta = 12 \), donc ce dernier a deux racines réelles distinctes :
\[x_1 = -\frac{2 - 2\sqrt{3}}{4} = -\frac{1 - \sqrt{3}}{2} \text{ et } x_2 = -\frac{1 + \sqrt{3}}{2}. \]
\[x_1 < -\frac{1}{2} \text{ et } x_2 \in]-\frac{1}{2} ; 1[. \] D'où le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\frac{1}{2})</th>
<th>(-\frac{1 + \sqrt{3}}{2})</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x - 1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(2x^2 + 2x - 1)</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

\[f(\frac{1}{2}) = \frac{5(\sqrt{3} - 1)}{2\sqrt{2}\sqrt{3}} \]

Le tableau de variations complet de \(f \) est :

| \(x \) | \(-1 \) | \(-\frac{1}{2} \) | \(-\frac{1 + \sqrt{3}}{2} \) | 1 |
|---------|-----------------|-----------------|--------|
| \(f \) | +\(\infty \) | 0 | \(\infty \) | 0 |

On a alors la courbe suivante :
Corrigé de l’exercice 10.

1 Par construction, OM = ON = 60 mm, donc OAb est isocèle en O.

2 AOM est isocèle en O donc le pied de la hauteur issue de O est le milieu de [MN]. Dans le triangle OIM rectangle en I, on a :

\[
\sin \frac{\alpha}{2} = \frac{MN}{OM},
\]

soit :

\[
\sin \left(\frac{\alpha}{2} \right) = \frac{MN}{60},
\]

ou encore :

\[
\sin \left(\frac{\alpha}{2} \right) = \frac{MN}{120}.
\]

3 a. \(f'(x) = 1 - \cos x \). Or, \(x \in \left[0 ; \frac{\pi}{2} \right] \Rightarrow 0 \leq \cos x \leq 1 \), donc \(0 \leq f'(x) \leq 1 \). \(f'(x) \) est donc positive, ce qui implique que \(f \) est croissante sur \(\left[0 ; \frac{\pi}{2} \right] \).

\(f(0) = 0 - \sin 0 = 0 \) et \(f \left(\frac{\pi}{2} \right) = \frac{\pi}{2} - 1 \).

Ainsi, sur \(\left[0 ; \frac{\pi}{2} \right] \), \(f(x) \in \left[0 ; \frac{\pi}{2} - 1 \right] \).

b. De la question précédente, on peut déduire que pour \(x \in \left[0 ; \frac{\pi}{2} \right] \), la différence entre \(x \) et \(\sin x \) est inférieure à \(\frac{\pi}{2} - 1 \), soit approximativement 0,57, ce qui est relativement peu. On peut donc remplacer \(\sin x \) par \(x \) en ne commettant qu’une erreur faible si \(x \in \left[0 ; \frac{\pi}{2} \right] \).

4 De la question précédente, on peut écrire :

\[
\sin \left(\frac{\pi}{360} \alpha \right) \approx \frac{\pi}{360} \alpha
\]

et donc, d’après la question 2 :

\[
\frac{\pi}{360} \alpha \approx \frac{MN}{120}.
\]
Or,

\[\pi \approx 3 \]

d'où :

\[\alpha \approx MN. \]

La formule d’Al-Kashi nous donne :

\[MN^2 = 60^2 + 60^2 - 2 \times 60 \times 60 \times \cos \alpha, \]

soit :

\[g(\alpha) = 60\sqrt{2 - 2 \cos \alpha}. \]

La courbe représentative de la fonction \(d \) est :

On constate que pour \(\alpha \in [0 ; 70] \), \(|d(\alpha)| \leq 1\), ce qui signifie que la différence entre \(\alpha \) et \(g(\alpha) \) ne diffère pas plus de 1°. De plus, pour \(\alpha \in [70 ; 90] \), cette différence n’excède pas 5°, ce qui n’est pas énorme. L’approximation peut donc être considérée comme satisfaisante.
Énoncés

Fonction exponentielle

A Exercices d’application du cours
B Exercices de réflexion
C Exercice & corrigé relus avec attention pour éviter les erreurs

22 février 2017

Propriétés algébriques

■ Exercice 1. Produits, quotients et puissances
(Source : ts-exp-08)

Simplifier les nombres suivants en donnant le résultat sous la forme d’une seule exponentielle.

1. $e^5 \times e^{-3}$
2. $\frac{e^{-9}}{e^7}$
3. $(e^{-2})^3$
4. $\frac{e^3 \times e^{-4}}{e^{-2}}$
5. $\frac{e^2 \times e^{-2}}{e^{-1}}$
6. $(e^{-1} \times e^{-2})^3$

■ Exercice 2. Simplification d’expressions
(Source : ts-exp-09)

Simplifier les expressions suivantes en donnant le résultat sous la forme d’une seule exponentielle.

1. $e^{2x-1} \times e^{-x+3}$
2. $\frac{e^{3x-1}}{e^{4x-2}}$
3. $(e^{-x+1} \times e^{x-1})^2$
4. $\left(\frac{e^{2x+3} \times e^{3x-2}}{e^4}\right)^{-1}$

Équations – inéquations

■ Exercice 3. Équations
(Source : ts-exp-10)

Résoudre dans \mathbb{R} les équations suivantes :

1. $e^{x+2} = 0$
2. $e^{x^2+x+1} = -1$
3. $e^{2x+3} = e^{-2x-5}$
4. $e^{5x+2} = e^{3x+1}$
5. $e^{x^2-1} = e^{2x^2+3x-2}$
6. $5 - 2e^{3x+2} = 3$
7. $2 + 3e^{2x} = 5$
8. $7 - 4e^{5x-3} = 3$
Exercice 4. Équations avec changement de variable
(Source : ts-exp-11)
Résoudre dans \mathbb{R} les équations suivantes :

1. $e^{2x} - 2e^x + 1 = 0$
2. $e^{2x} + e^x - 2 = 0$

Les équations suivantes nécessitent le logarithme népérien.

3. $2e^{2x} - 7e^x + 3 = 0$
4. $6e^{2x} + e^x - 1 = 0$

Exercice 5. Inéquations
(Source : ts-exp-12)
Résoudre dans \mathbb{R} est inéquations suivantes.

1. $e^{3x-1} > e^{2x+4}$
2. $e^{-2x+5} \leq e^{4x+7}$
3. $e^{x^2-1} < e$
4. $12 - 4e^{5x+1} \geq 8$
5. $8 + 3e^{-2x+3} \leq 11$
6. $56 + 14e^{47x-15} > 70$

Exercice 6. Inéquations avec changement de variable
(Source : ts-exp-13)
Résoudre dans \mathbb{R} les inéquations suivantes :

1. $e^{2x} + e^x - 2 \geq 0$
2. $e^{2x} - 2e^x + 1 \leq 0$

Les inéquations suivantes nécessitent le logarithme népérien.

3. $6e^{2x} + e^x - 1 \leq 0$
4. $2e^{2x} - 7e^x + 3 < 0$

Études de fonctions

Certaines questions des exercices suivants font appel à la notion de logarithme népérien. Pour les élèves qui n’auraient pas encore abordé cette notion, il suffit d’accepter qu’il existe une fonction, notée \ln, qui vérifie l’équivalence suivante : $e^x = y \iff x = \ln y$, avec $y > 0$.

Exercice 7. Fonction $f : x \mapsto e^{2x} - (x + 1)e^x$
(Source : ts-exp-01)

Partie A : Démonstration de cours

1. Démontrer que pour tout réel positif ou nul x :

 $$e^x - \frac{x^2}{2} \geq 1.$$

2. En déduire $\lim_{x \to +\infty} \frac{e^x}{x}$.
Partie B : Étude d’une fonction auxiliaire

On considère la fonction g définie sur \mathbb{R} par :

$$g(x) = 2e^x - x - 2.$$

1. Déterminer la limite de g en $-\infty$ puis en $+\infty$.

2. Étudier le sens de variation de g puis dresser son tableau de variations.

3. a. Montrer que $x = 0$ est solution de l’équation $g(x) = 0$.

 b. Montrer que l’équation $g(x) = 0$ admet une deuxième solution α sur l’intervalle $]-1,6 ; -1,5[$.

Partie C : Étude de la fonction principale

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = e^{2x} - (x + 1)e^x.$$

1. Déterminer la limite de f en $-\infty$ puis en $+\infty$.

2. Calculer $f'(x)$. Déduire de la partie B le signe de $f'(x)$ sur \mathbb{R}.

3. Montrer que :

$$f(\alpha) = -\frac{\alpha^2 + 2\alpha}{4}$$

où α est définie dans la partie précédente.

En déduire un encadrement de $f(\alpha)$.

4. Dresser un tableau de variations de f.

5. Tracer la courbe \mathcal{C}, représentative de f dans le plan rapporté à un repère orthnormal (unité graphique : 2cm).

Exercice 8. Courbe de Gauss

(Source : ts-exp-02)

Soit k un réel strictement positif. On définit alors la fonction g_k par :

$$g_k(x) = e^{-kx^2}.$$

1. Étudier la parité de la fonction g_k.

2. Démontrer que g_k est dérivable et donner sa dérivée g_k'.

3. Étudier le signe de $g_k'(x)$ puis dresser le tableau de variation de g_k.

4. Exprimer $g_k''(x)$ et résoudre l’équation $g_k''(x) = 0$.

5. Tracer la courbe de $g_{\frac{1}{2}}$, g_1 et g_2.

6. Démontrer que, sur \mathbb{R} :

$$h \leq g \iff g_h \geq g_k.$$
Dans cette question, \(k = \frac{1}{2} \). Soit \(\alpha \) la solution positive de l'équation \(g_k''(x) = 0 \).
Déterminer une équation de la tangente \((T)\) à la courbe \(g_k\) au point d'abscisse \(\alpha\). Tracer \((T)\).

Exercice 9. Fonction \(f : x \mapsto e^{x-\sqrt{x}}\)
(Source : ts-exp-03)

On considère la fonction \(f\) définie sur \([0 ; +\infty[\) par :
\[
f(x) = e^{x-\sqrt{x}}.
\]

1. Tracer la courbe représentative de \(f\) sur \([0 ; 10]\) sur votre calculatrice.
Conjecturer alors le sens de variation de \(f\) sur \([0 ; +\infty[\).
2. Calculer \(\lim_{x \to +\infty} f(x)\).
3. Calculer \(f'(x)\) puis étudier son signe sur \([0 ; +\infty[\).
Dresser alors le tableau de variations complet de \(f\).
La conjecture faite à la question 1 était-elle correcte?

Exercice 10. Fonction \(f : x \mapsto \sqrt{x}e^x\)
(Source : ts-exp-04)

Soit \(f\) la fonction définie sur \(\mathbb{R}^+\) par :
\[
f(x) = \sqrt{x}e^x.
\]

1. Calculer \(\lim_{x \to +\infty} f(x)\).
2. Déterminer \(f'(x)\).
3. En déduire les variations de \(f\) sur \(\mathbb{R}^+\).
Dresser un tableau de variations complet de \(f\).

Exercice 11. Fonction \(f_k : x \mapsto \ln (e^x + kx) - x\)
(Source : ts-exp-05)

Pour tout réel \(k\) strictement positif, on considère la fonction \(f_k\) définie sur \([0 ; +\infty[\) par :
\[
f_k(x) = \ln (e^x + kx) - x.
\]

On note \(C_k\) la courbe représentative de la fonction \(f_k\) dans le plan muni d’un repère orthogonal \((O; \overrightarrow{i} , \overrightarrow{j})\).

1. En étudiant le sens de variation d’une fonction convenablement choisie, démontrer que pour tout réel positif \(x\),
\[
\ln(1 + x) \leq x.
\]
2. Calculer \(f'_k(x)\) pour tout réel \(x\) appartenant à l’intervalle \([0 ; +\infty[\) et en déduire le sens de variation de la fonction \(f_k\).
3 Montrer que pour tout réel positif x,

$$f_k(x) = \ln \left(1 + k \frac{x}{e^x}\right).$$

En déduire la limite de f_k en $+\infty$.

4

a. Dresser le tableau de variations de f_k.

b. Montrer que pour tout réel positif x,

$$f_k(x) \leq \frac{k}{e}.$$

5 Déterminer une équation de la tangente T_k à la courbe C_k au point O.

Exercice 12. Fonction $f : x \mapsto (x - 1) \left(2 - e^{-x}\right)$

(Source : ts-exp-06)

Soit f la fonction définie sur l’intervalle $[0; +\infty]$ par :

$$f(x) = (x - 1) \left(2 - e^{-x}\right).$$

Sa courbe représentative C est tracée dans le repère orthonormal ci-dessous.

1

a. Étudier la limite de f en $+\infty$.

b. Montrer que la droite Δ d’équation $y = 2x - 2$ est asymptote à C.

c. Étudier la position relative de C et Δ.
2. a. Calculer $f'(x)$ et montrer que $f'(x) = xe^{-x} + 2(1 - e^{-x})$.
 b. En déduire que, pour tout réel x strictement positif, $f'(x) > 0$.
 c. Préciser la valeur de $f'(0)$ puis donner les variations de f.

Exercice 13. Fonction $f(x) = (2x + 1)e^{-x}$

(Source : ts-exp-07)

Partie A : étude d’une fonction auxiliaire

Soit φ la fonction définie sur \mathbb{R} par :

$$\varphi(x) = \left(x^2 + x + 1 \right) e^{-x} - 1.$$

1. a. Déterminer les limites de φ en $-\infty$ et en $+\infty$.
 b. Étudier le sens de variations de φ puis dresser son tableau de variations sur \mathbb{R}.

2. Démontrer que l’équation $\varphi(x) = 0$ admet deux solutions dans \mathbb{R}, dont l’une dans l’intervalle $[1; +\infty[$, qui sera notée α.
 Déterminer un encadrement d’amplitude 10^{-3} de α.

3. En déduire le signe de $\varphi(x)$ sur \mathbb{R} et le présenter dans un tableau.

Partie B : étude de la position relative de deux courbes

Les fonctions f et g sont définies sur \mathbb{R} par :

$$f(x) = (2x + 1)e^{-x}$$ et $$g(x) = \frac{2x + 1}{x^2 + x + 1}.$$

Leurs courbes représentatives dans un repère orthogonal $(O; \vec{i}, \vec{j})$ sont notées respectivement \mathcal{C}_f et \mathcal{C}_g et sont représentées ci-dessous :

1. Démontrer que les deux courbes passent par le point A de coordonnées $(0; 1)$ et admettent en ce point la même tangente.
2 a. Démontrer que, pour tout nombre réel x,

$$f(x) - g(x) = \frac{(2x + 1)\varphi(x)}{x^2 + x + 1}$$

où φ est la fonction étudiée dans la partie A.

b. Étudier le signe de $f(x) - g(x)$ pour $x \in \mathbb{R}$.

c. En déduire la position relative des courbes C_f et C_g.

Exercice 14. Fonction $f : x \mapsto e^x - \frac{e^{-x}}{e^x + e^{-x}}$

(Source : ts-exp-14)

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

On note C sa courbe représentative dans un repère orthonormé.

1. Montrer que f est impaire.

2. Calculer $\lim_{x \to +\infty} f(x)$.

3. Montrer que $f'(x) = \frac{4}{(e^x + e^{-x})^2}$.

 En déduire les variations de f sur \mathbb{R}.

4. Déterminer une équation de la tangente à C au point d’abscisse 0.
Corrigé de l’exercice 1.

1. $e^5 \times e^{-3} = e^{5+(-3)} = e^2$.
2. $\frac{e^{-9}}{e^7} = e^{-9-7} = e^{-16}$.
3. $(e^{-2})^3 = e^{-2\times3} = e^{-6}$.
4. $\frac{e^3 \times e^{-4}}{e^{-2}} = e^{3-4-(-2)} = e^1 = e$.
5. $\frac{e^2 \times e^{-2}}{e^{-1}} = e^{2-2+1} = e$.
6. $(e^{-1} \times e^{-2})^3 = e^{(-1-2)\times3} = e^{-9}$.

Corrigé de l’exercice 2.

1. $e^{2x-1} \times e^{-x+3} = e^{2x-1-x+3} = e^{x+2}$.
2. $\frac{e^{3x-1}}{e^{4x-2}} = e^{3x-1-(4x-2)} = e^{-x+1}$.
3. $(e^{-x+1} \times e^{x-1})^2 = e^{(-x+1+x-1)\times2} = e^0 = 1$.
4. $\left(\frac{e^{2x+3} \times e^{3x-2}}{e^4}\right)^{-1} = e^{(2x+3-3x+2)\times(-1)} = e^{x-5}$.

Corrigé de l’exercice 3.

1. Une exponentielle étant toujours strictement positive, l’équation $e^{x+2} = 0$ n’admet aucune solution. $\mathcal{S} = \emptyset$.
2. Une exponentielle étant toujours strictement positive, l’équation $e^{x^2+x+1} = -1$ n’admet aucune solution. $\mathcal{S} = \emptyset$.
3. $e^{2x+3} = e^{-2x-5} \iff 2x + 3 = -2x - 5 \iff 4x = -8 \iff x = -2$

L’ensemble solution de l’équation $e^{2x+3} = e^{-2x-5}$ est donc $\mathcal{S} = \{-2\}$.
4. $e^{5x+2} = e^{3x+1} \iff 5x + 2 = 3x + 1 \iff 2x = -1 \iff x = -\frac{1}{2}$.
L’ensemble solution de l’équation $e^{5x+2} = e^{3x+1}$ est donc $\mathcal{S} = \{ -\frac{1}{2} \}$

5 $e^{x^2-1} = e^{2x^2+3x-2} \iff x^2 - 1 = 2x^2 + 3x - 2 \iff x^2 + 3x - 1 = 0$

Le discriminant de $x^2 + 3x - 1$ est $\Delta = 9 + 4 = 13$ donc il y a deux solutions :

$x_1 = \frac{-3 - \sqrt{13}}{2}$ et $x_2 = \frac{-3 + \sqrt{13}}{2}$.

Donc $\mathcal{S} = \left\{ \frac{-3 - \sqrt{13}}{2} ; \frac{-3 + \sqrt{13}}{2} \right\}$

6 $5 - 2e^{3x+2} = 3 \iff -2e^{3x+2} = -2 \iff e^{3x+2} = 1 \iff e^{3x+2} = e^0 \iff 3x + 2 = 0 \iff x = -\frac{2}{3}$

L’ensemble solution de l’équation $5 - 2e^{3x+2} = 3$ est donc $\mathcal{S} = \left\{ -\frac{2}{3} \right\}$

7 $2 + 3e^{2x} = 5 \iff 3e^{2x} = 3 \iff e^{2x} = 1 \iff e^{2x} = e^0 \iff 2x = 0 \iff x = 0$

L’ensemble solution de l’équation $2 + 3e^{2x} = 5$ est donc $\mathcal{S} = \{0\}$

8 $7 - 4e^{5x-3} = 3 \iff -4e^{5x-3} = -4 \iff e^{5x-3} = 1 \iff e^{5x-3} = e^0 \iff 5x - 3 = 0 \iff x = \frac{3}{5}$

L’ensemble solution de l’équation $7 - 4e^{5x-3} = 3$ est donc $\mathcal{S} = \left\{ \frac{3}{5} \right\}$

Corrigé de l’exercice 4.

1 $e^{2x} - 2e^x + 1 = 0$. On pose $X = e^x$. Ainsi, comme $e^{2x} = (e^x)^2$, l’équation est équivalente à :

$X^2 - 2X + 1 = 0 \iff (X - 1)^2 = 0 \iff X = 1 \iff e^x = 1 \iff x = 0$.

L’ensemble solution est donc $\mathcal{S} = \{0\}$
2. On pose \(X = e^x\) et l’équation devient :
\[X^2 + X - 2 = 0.\]
Le discriminant du polynôme \(X^2 + X - 2\) est \(\Delta = 9\) donc il admet deux racines :
\[X_1 = \frac{-1 - 3}{2} = -2 \quad \text{et} \quad X_2 = \frac{-1 + 3}{2} = 1.\]
Ainsi,
\[e^{x_1} = -2 \quad \text{et} \quad e^{x_2} = 1.\]
Une exponentielle étant strictement positive, \(e^{x_1} = -2\) est impossible.
\[e^{x_2} = 1 \iff x = 0\] donc l’ensemble solution est \(\mathcal{S} = \{0\}\).

3. \(2e^{2x} - 7e^x + 3 = 0 \iff 2X^2 - 7X + 3 = 0\) avec \(X = e^x\).
Le discriminant de \(2X^2 - 7X + 3\) est \(\Delta = 49 - 4 \times 2 \times 3 = 25 > 0\) donc il admet deux racines :
\[X_1 = \frac{7 - 5}{4} = \frac{1}{2} = e^{x_1} \iff x_1 = \ln \frac{1}{2} = -\ln 2\]
et
\[X_2 = \frac{7 + 5}{4} = 3 = e^{x_2} \iff x_2 = \ln 3.\]
L’ensemble solution est donc \(\mathcal{S} = \{-\ln 2 ; \ln 3\}\).

4. \(6e^{2x} + e^x - 1 = 0 \iff 6X^2 + X - 1 = 0\) avec \(X = e^x\).
Le discriminant de \(6X^2 + X - 1\) est \(\Delta = 25\) donc le polynôme admet deux racines :
\[X_1 = \frac{-1 - 5}{12} = -\frac{1}{2} = e^{x_1} \text{ impossible car } e^x > 0 \text{ pour tout réel } x\]
et
\[X_2 = \frac{-1 + 5}{12} = \frac{1}{3} = e^{x_2} \iff x_2 = \ln \frac{1}{3} = -\ln 3.\]
L’ensemble solution est donc \(\mathcal{S} = \{-\ln 3\}\).

Corrigé de l’exercice 5.

1. \(e^{3x-1} > e^{2x+4} \iff 3x - 1 > 2x + 4 \iff x > 5.\]
L’ensemble solution est donc \(\mathcal{S} =]5 ; +\infty]\).

2. \(e^{-2x+5} \leq e^{4x+7} \iff -2x + 5 \leq 4x + 7 \iff 6x \geq -2 \iff x \geq -\frac{1}{3}.\]
L’ensemble solution est donc \(\mathcal{S} =]-\frac{1}{3} ; +\infty]\).

3. \(e^{x^2-1} < e \iff x^2 - 1 < 1 \iff x^2 - 2 < 0.\)
\(x^2 - 2\) admet pour racines \(\sqrt{2}\) et \(-\sqrt{2}\), et est négatif entre ses racines, donc l’ensemble solution de l’inéquation est \(\mathcal{S} =]-\sqrt{2} ; \sqrt{2}[\).
4 12 − 4e^{5x+1} ≥ 8 \iff −4e^{5x+1} ≥ −4
\iff e^{5x+1} ≤ 1
\iff e^{5x+1} ≤ e^0
\iff 5x + 1 ≤ 0
\iff x ≤ −\frac{1}{5}

L’ensemble solution est donc \(\mathcal{S} = [−∞ ; −\frac{1}{5}] \)

5 8 + 3e^{−2x+3} ≤ 11 \iff 3e^{−2x+3} ≤ 3
\iff e^{−2x+3} ≤ 1
\iff e^{−2x+3} ≤ e^0
\iff −2x + 3 ≤ 0
\iff −2x ≤ −3
\iff x ≥ \frac{3}{2}

L’ensemble solution est donc \(\mathcal{S} = [\frac{3}{2} ; +∞[\)

6 56 + 14e^{47x−15} > 70 \iff 14e^{47x−15} > 14
\iff e^{47x−15} > 1
\iff 47x − 15 > 0
\iff x > \frac{15}{47}

L’ensemble solution est donc \(\mathcal{S} =]\frac{15}{47} ; +∞[\)

■ Corrigé de l’exercice 6.

1 e^{2x} + e^x − 2 ≥ 0 \iff X^2 + X − 2 ≥ 0 avec \(X = e^x \)
\iff (X − 1)(X + 2) ≥ 0 (voir exercice 4 pour les racines)
\iff (e^x − 1)(e^x + 2) ≥ 0
\iff e^x − 1 ≥ 0 car e^x + 2 > 0 pour tout réel \(x \)
\iff e^x ≥ 1
\iff x ≥ 0

L’ensemble solution est donc \(\mathcal{S} = [0 ; +∞[\)

2 e^{2x} − 2e^x + 1 ≤ 0 \iff X^2 − 2X + 1 ≤ 0 avec \(X = e^x \)
\iff (X − 1)^2 ≤ 0
\iff (X − 1)^2 = 0 car (X − 1)^2 est toujours positif ou nul
\iff X = 1
\iff e^x = 1
\iff x = 0

L’ensemble solution est donc \(\mathcal{S} = \{0\} \)
3 $6e^{2x} + e^x - 1 \leq 0 \iff 6X^2 + X - 1 \leq 0$ avec $X = e^x$
\[\iff (3X - 1)(2X + 1) \leq 0 \] (voir exercice 4 pour les racines)
\[\iff (3e^x - 1)(2e^x + 1) \leq 0 \]
\[\iff 3e^x - 1 \leq 0 \text{ car } 2e^x + 1 > 0 \text{ pour tout réel } x \]
\[\iff e^x \leq \frac{1}{3} \]
\[\iff x \leq -\ln 3 \]
L’ensemble solution est donc $\mathcal{S} = (-\infty ; -\ln 3]$.

4 $2e^{2x} - 7e^x + 3 < 0$ $\iff 2X^2 - 7X + 3 < 0$ avec $X = e^x$
\[\iff (2X - 1)(X - 3) < 0 \] (voir exercice 4 pour les racines)
\[\iff (2e^x - 1)(e^x - 3) < 0 \]
De plus, $2e^x - 1 > 0$ $\iff e^x > \frac{1}{2}$ et $e^x - 3 > 0$ $\iff e^x > 3$, d’où le tableau
\[x > -\ln 2 \quad \iff x > \ln 3 \]
page suivante.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>$-\infty$</th>
<th>$-\ln 2$</th>
<th>$\ln 3$</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2e^x - 1$</td>
<td></td>
<td>$-$</td>
<td>\emptyset</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$e^x - 3$</td>
<td></td>
<td>$-$</td>
<td>$-$</td>
<td>\emptyset</td>
<td>$+$</td>
</tr>
<tr>
<td>$(2e^x - 1)(e^x - 3)$</td>
<td></td>
<td>$+$</td>
<td>\emptyset</td>
<td>$-$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

L’ensemble solution de l’inéquation $2e^{2x} - 7e^x + 3 < 0$ est donc $\mathcal{S} = [-\ln 2 ; \ln 3]$.

Corrigé de l’exercice 7.

Partie A : Démonstration de cours

1 Posons $h(x) = e^x - \frac{x^2}{2}$. Alors, h est dérivable sur \mathbb{R} comme somme de deux fonctions dérivables sur \mathbb{R} ; on a alors $h'(x) = e^x - x$ et $h''(x) = e^x - 1$.

Or, $x \geq 0$ donc $e^x \geq e^0 = 1$ donc $h''(x) \geq 0$, ce qui signifie que h' est croissante. Or, $h'(0) = 1$ donc $h'(x) > 0$, ce qui implique que h est croissante. Or, $h(0) = 1$ donc $h(x) \geq 1$.

2 De l’inégalité précédente, on en déduit que pour $x > 0$, on a :

\[e^x \geq 1 + \frac{x^2}{2} \]

soit en divisant par x :

\[\frac{e^x}{x} \geq \frac{1}{x} + \frac{x}{2} \]

Or, $\lim_{x \to +\infty} \left(\frac{1}{x} + \frac{x}{2} \right) = +\infty$. Ainsi, par comparaison, on a :

\[\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \]
Partie B : Étude d’une fonction auxiliaire

1 On a :
\[
\lim_{x \to -\infty} 2e^x = 0 \quad \lim_{x \to -\infty} (-x - 2) = +\infty \quad \implies \quad \lim_{x \to -\infty} g(x) = +\infty
\]

On peut écrire : \(g(x) = x \left(\frac{2e^x}{x} - 1 - \frac{2}{x} \right) \). Donc :
\[
\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \quad \lim_{x \to +\infty} \left(-1 - \frac{2}{x} \right) = -1 \quad \implies \quad \lim_{x \to +\infty} g(x) = +\infty
\]

2 \(g \) est dérivable sur \(\mathbb{R} \) comme somme de fonctions dérivables sur \(\mathbb{R} \). On a :
\[
g'(x) = 2e^x - 1.
\]
Ainsi :
\[
g'(x) > 0 \iff 2e^x > 1 \iff e^x > \frac{1}{2} \iff x > \ln \frac{1}{2}
\]
D'où le tableau de variations suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(\ln \frac{1}{2})</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g'(x))</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>(g)</td>
<td>+\infty</td>
<td>(\ln 2 - 1)</td>
<td>+\infty</td>
</tr>
</tbody>
</table>

\[
g\left(\ln \frac{1}{2} \right) = 2e^{\ln \frac{1}{2}} - \ln \frac{1}{2} - 2 = 1 + \ln 2 - 2 = \ln 2 - 1
\]

3 a. \(g(0) = 2e^0 - 0 - 2 = 2 - 2 = 0 \) donc \(x = 0 \) est bien une solution de l’équation \(g(x) = 0 \).

b. \(g \) est continue sur \(\left[-\infty ; \ln \frac{1}{2} \right] \) donc a fortiori sur \(\left] -1, 6 ; -1, 5 \right[\).

De plus, \(g(-1, 6) \approx 0,004 > 0 \) et \(g(-1, 5) \approx -0,054 < 0 \).

Ainsi, d’après le théorème des valeurs intermédiaires, il existe une unique solution (appelée \(\alpha \)) à l’équation \(g(x) = 0 \) sur l’intervalle \(\left[-1, 6 ; -1, 5 \right[\).

De même, l’équation admet une unique solution sur \(\left[\ln \frac{1}{2} ; +\infty \right[\), qui est \(x = 0 \) d’après la question précédente.

L’équation n’admet donc que deux solutions sur \(\mathbb{R} \).

Partie C : Étude de la fonction principale

1 On peut écrire \(f(x) \) sous la forme :
\[
f(x) = e^{2x} \left(1 - \frac{x}{e^x} - \frac{1}{e^x} \right).
\]
Donc :
\[
\begin{align*}
\lim_{x \to +\infty} \left(-\frac{x}{e^x} \right) &= 0 \text{ (Partie A)} \\
\lim_{x \to +\infty} \left(-\frac{1}{e^x} \right) &= 0 \\
\lim_{x \to +\infty} e^{2x} &= +\infty
\end{align*}
\]
\[\implies \lim_{x \to +\infty} f(x) = +\infty\]

De plus :
\[
\begin{align*}
\lim_{x \to -\infty} e^{2x} &= 0 \\
\lim_{x \to -\infty} (xe^x) &= 0
\end{align*}
\]\[\implies \lim_{x \to -\infty} f(x) = 0\]

2) \(f\) est dérivable sur \(\mathbb{R}\) comme somme de deux fonctions dérivables sur \(\mathbb{R}\), et on a :
\[
f'(x) = 2e^{2x} - (e^x + (x + 1)e^x) = 2e^{2x} - (x + 2)e^x = e^x(2e^x - x - 2) = e^x g(x)
\]
Ainsi, \(f'(x)\) est du même signe que \(g(x)\).

3) On sait que \(g(\alpha) = 0\), c'est-à-dire que \(2e^\alpha - \alpha - 2 = 0\), soit \(e^\alpha = \frac{\alpha + 2}{2}\).
Ainsi :
\[
f(\alpha) = \left(\frac{\alpha + 2}{2} \right)^2 - (\alpha + 1) \frac{\alpha + 2}{2} = \frac{\alpha^2 + 4\alpha + 4}{4} - \frac{\alpha^2 + 3\alpha + 2}{2} = \frac{\alpha^2 + 4\alpha + 4 - 2\alpha^2 - 6\alpha - 4}{4} = -\frac{\alpha^2 + 2\alpha}{4}
\]
On sait que :
\(-1, 6 \leq \alpha \leq -1, 5\)
Donc :
\[2, 25 = (-1, 5)^2 \leq \alpha^2 \leq (-1, 6)^2 = 2, 56 \quad \text{et} \quad -3, 2 \leq 2\alpha \leq -3,\]
d'où :
\[-0, 95 = -3, 2 + 2, 25 \leq \alpha^2 + 2\alpha \leq 2, 56 - 3 = -0, 44.\]
En multipliant par \(-\frac{1}{4}\) chaque membre de cet encadrement, on obtient :
\[0, 11 \leq f(\alpha) \leq 0, 2375\]
On a alors :

<table>
<thead>
<tr>
<th></th>
<th>$-\infty$</th>
<th>α</th>
<th>0</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td>$+$</td>
<td>θ</td>
<td>$-$</td>
<td>θ</td>
</tr>
<tr>
<td>f</td>
<td>\rightarrow $f(\alpha)$</td>
<td>0</td>
<td>\rightarrow $+\infty$</td>
<td></td>
</tr>
</tbody>
</table>

On a :

![Graph](image)

Corrigé de l’exercice 8.

1. $\forall x \in \mathbb{R}, g_k(-x) = e^{-k(-x)^2} = e^{-kx^2} = g_k(x)$. Donc g_k est paire.

2. g_k est la composée d’une fonction polynôme ($u : x \mapsto -kx^2$) et d’une fonction exponentielle. Par conséquent, elle est dérivable sur \mathbb{R} comme la composée de deux fonctions dérivables sur \mathbb{R}.

 $$g_k'(x) = \left(e^{u(x)}\right)'$$
 $$= u'(x)e^{u(x)}$$
 $$g_k'(x) = -2kxe^{-kx^2}$$

3. $\forall x \in \mathbb{R}_+, e^{-kx^2} > 0$ et $-2kx < 0$. Ainsi, $g_k'(x) < 0$ sur \mathbb{R}_+. La fonction g_k est donc strictement décroissante sur \mathbb{R}_+. Par parité, g_k est donc croissante sur \mathbb{R}_-. On a $\lim_{x \to +\infty} (-kx^2) = -\infty$ et $\lim_{x \to -\infty} e^x = 0$ donc $\lim_{x \to +\infty} g_k(x) = 0$.

34
De plus, \(g_k(0) = e^{-k\times0^2} = e^0 = 1 \). On a donc le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>0</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_k(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(g_k)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

4. \(g_k''(x) = -2ke^{-kx^2} - 2kx \times (-2kx)e^{-kx^2} \)
 \(= -2ke^{-kx^2}(1 - 2kx^2) \)

Ainsi :

\[
g_k''(x) = 0 \iff 1 - 2kx^2 = 0
\]
\[
\iff x^2 = \frac{1}{2k} \quad \iff x = \frac{1}{\sqrt{2k}} \quad \text{ou} \quad x = -\frac{1}{\sqrt{2k}} \quad (k > 0)
\]

5. Nous avons les courbes suivantes :

6. \(h \leq k \iff -k \leq -h \)
 \(\iff -kx^2 \leq -hx^2 \quad \text{car} \ x^2 \geq 0 \)
 \(\iff e^{-kx^2} \leq e^{-hx^2} \quad \text{car la fonction exponentielle est strictement croissante} \)
 \(\iff g_k(x) \leq g_h(x) \)

7. Une équation de la tangente \((T) \) à \(C_{g_{\frac{1}{2}}} \) au point d’abscisse \(\alpha \) est :

\[
y = g_{\frac{1}{2}}'(\alpha)(x - \alpha) + g_{\frac{1}{2}}(\alpha)
\]
\[
y = -e^{-\frac{1}{2}}(x - 1) + e^{-\frac{1}{2}}
\]
\[
y = -\frac{1}{\sqrt{e}}x + \frac{2}{\sqrt{e}}
\]
Corrigé de l'exercice 9.

1. On a :

On peut alors conjecturer que \(f \) est croissante sur \([0; +\infty[\).

2. \(f(x) = e^{x \left(1 - \frac{1}{\sqrt{x}} \right)} \).
 \[
 \lim_{x \to +\infty} \left(1 - \frac{1}{\sqrt{x}} \right) = 1.
 \]
 Par conséquent, \(\lim_{x \to +\infty} x \left(1 - \frac{1}{\sqrt{x}} \right) = +\infty \).
 Or, \(\lim_{x \to +\infty} e^x = +\infty \) donc :
 \[
 \lim_{x \to +\infty} f(x) = +\infty.
 \]

3. \(f'(x) = \left(1 - \frac{1}{2\sqrt{x}} \right) e^{x - \sqrt{x}} \)
 \[
 = \frac{2\sqrt{x} - 1}{2\sqrt{x}} e^{x - \sqrt{x}}
 \]
 \[
 f'(x) > 0 \iff 2\sqrt{x} - 1 > 0
 \iff \sqrt{x} > \frac{1}{2}
 \iff x > \frac{1}{4}
 \]

D'où le tableau ci-contre.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(\frac{1}{4})</th>
<th>+\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>(f(x))</td>
<td>1</td>
<td>e^{-\frac{1}{4}}</td>
<td>+\infty</td>
</tr>
</tbody>
</table>

La conjecture faite à la question 1 n'était donc pas correcte.
Corrigé de l’exercice 10.

1 \[\lim_{x \to +\infty} \sqrt{x} = +\infty \quad \text{et} \quad \lim_{x \to +\infty} e^x = +\infty. \]

Par produit, on déduit que \(\lim_{x \to +\infty} f(x) = +\infty \).

2 \[f'(x) = \left(\frac{1}{2\sqrt{x}} + \frac{1}{\sqrt{x}} \right) e^x, \quad \text{soit} \quad f'(x) = \left(\frac{1 + 2x}{2\sqrt{x}} \right) e^x. \]

3 \[f'(x) > 0 \iff 1 + 2x > 0 \iff x > -\frac{1}{2} \quad \text{d'où le tableau suivant :} \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>+\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(f(x))</td>
<td>0</td>
<td>+\infty</td>
</tr>
</tbody>
</table>

Corrigé de l’exercice 11.

1 Posons \(\varphi : x \mapsto \ln(1 + x) - x. \)

Alors, \(\varphi'(x) = \frac{1}{1 + x} - 1 = -\frac{x}{1 + x} < 0 \) sur \([0 ; +\infty[.\]

Par conséquent, \(\varphi \) est décroissante sur \([0 ; +\infty[. \) Or, \(\varphi(0) = 0 \) donc \(\varphi(x) \leq 0 \) sur \([0 ; +\infty[. \)

On en déduit donc que pour tout réel \(x \) positif, \(\ln(1 + x) - x \leq 0 \), soit \(\ln(1 + x) \leq x. \)

2 \[f_k(x) = e^x + k - e^x + kx = k(1 - x) - e^x + kx. \]

\(e^x + kx > 0 \) pour \(x > 0. \)

Ainsi, \(f_k(x) \geq 0 \iff 1 - x \geq 0 \iff x \leq 1. \)

Donc \(f_k \) est croissante sur \([0 ; 1]\) et décroissante sur \([1 ; +\infty[. \)

3 \[f_k(x) = \ln \left(e^x + kx \right) - x \]
\[= \ln \left(e^x \left(1 + k \frac{x}{e^x} \right) \right) - x \]
\[= \ln e^x + \ln \left(1 + k \frac{x}{e^x} \right) - x \]
\[= x + \ln \left(1 + k \frac{x}{e^x} \right) - x \]

\(f_k(x) = \ln \left(1 + k \frac{x}{e^x} \right). \)

D’après le cours, \(\lim_{x \to +\infty} e^x = +\infty \) donc \(\lim_{x \to +\infty} \frac{x}{e^x} = 0. \)

Ainsi, \(\lim_{x \to +\infty} f_k(x) = \ln 1 = 0. \)
a. On a le tableau suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_k'(x)$</td>
<td>$+$</td>
<td>Ø</td>
<td>$-$</td>
</tr>
<tr>
<td>f_k</td>
<td>0</td>
<td>$\ln(e + k) - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

$f_k(0) = \ln(e^0 + k \times 0) - 0 = \ln 1 = 0$

b. D'après la question précédente, $f_k(x) \leq \ln(e + k) - 1$.

Or,

$$\ln(e + k) - 1 = \ln \left(e \left(1 + \frac{k}{e} \right) \right) - 1$$

$$= \ln e + \ln \left(1 + \frac{k}{e} \right) - 1$$

$$= \ln \left(1 + \frac{k}{e} \right)$$

$$\leq \frac{k}{e}$$ d’après la question 1 car $\frac{k}{e} > 0$

Ainsi, $f_k(x) \leq \frac{k}{e}$.

5. Une équation de la tangente à C_k au point d’abscisse a est :

$$y = f_k'(a)(x - a) + f_k(a).$$

Donc, au point O $(a = 0)$, on a :

$$y = f_k'(0)(x - 0) + f_k(0)$$

$\iff [y = kx]$

Corrigé de l’exercice 12.

1. a. $\lim_{x \to +\infty} (x - 2) = +\infty$

b. $f(x) = 2x - 2 + -xe^{-x} + e^{-x}$ donc $f(x) - (2x - 2) = \frac{x}{e^x} + e^{-x}$.

Or, $\lim_{x \to +\infty} \frac{x}{e^x} = 0$ (cours) et $\lim_{x \to +\infty} e^{-x} = 0$ donc $\lim_{x \to +\infty} [f(x) - (2x - 2)] = 0$, ce qui signifie que la droite d’équation $y = 2x - 2$ est asymptote à C en $+\infty$.

c. $f(x) - (2x - 2) = (1 - x)e^{-x} > 0$ si $1 - x > 0$, soit $x < 1$.

Ainsi, C est au-dessus de Δ sur $[0; 1]$ et au-dessous sur $[1; +\infty[$.
a. \(f \) est de la forme \(uv \) avec \(u(x) = x - 1 \) et \(v(x) = 2 - e^{-x} \). Ainsi, \(f' = u'v + uv' \) avec \(u'(x) = 1 \) et \(v'(x) = e^{-x} \). D'où :
\[
f'(x) = 2 - e^{-x} + (x - 1)e^{-x} = 2 - e^{-x} + xe^{-x} - e^{-x}
\]
\[
f'(x) = xe^{-x} + 2(1 - e^{-x})
\]

b. Si \(x > 0 \), alors \(e^{-x} > 1 \) et \(1 - e^{-x} > 0 \). De plus, \(xe^{-x} > 0 \) donc, par somme de termes positifs, \(f'(x) > 0 \).

c. \(f'(0) = 0 \). De la question précédente, on déduit que \(f \) est strictement croissante sur \([0 ; +\infty[\).

Corrigé de l'exercice 13.

Partie A : étude d'une fonction auxiliaire

1. \(\varphi(x) = \frac{x^2}{e^x} + \frac{x}{e^x} + 1 \).

Or, \(\lim_{x \to +\infty} \frac{x^n}{e^x} = 0 \), avec \(n \in \mathbb{N} \).

Par conséquent, \(\lim_{x \to +\infty} \varphi(x) = -1 \).

De plus, \(\lim_{x \to -\infty} \left(x^2 + x + 1 \right) = +\infty \) et \(\lim_{x \to -\infty} e^{-x} = +\infty \).

Par produit, \(\lim_{x \to -\infty} \varphi(x) = +\infty \).

b. \(\varphi'(x) = x(1 - x)e^{-x} \) d'où le tableau de variations suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>0</th>
<th>1</th>
<th>+(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi'(x))</td>
<td>(-\infty)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(\varphi(x))</td>
<td>(+\infty)</td>
<td>+</td>
<td>0</td>
<td>3e^{-1} - 1</td>
</tr>
</tbody>
</table>

2. D'après le tableau ci-dessus, « 0 » est une solution à l’équation \(\varphi(x) = 0 \). Celle-ci n’admet pas de solution sur \([0 ; +\infty[\) puisque 0 est un minimum sur cet intervalle. \(f(1) \approx 0, 1 > 0 \) et \(\lim_{x \to +\infty} \varphi(x) < 0 \). De plus, \(\varphi \) est continue et strictement décroissante sur \([1 ; +\infty[\) donc d'après le corollaire du théorème des valeurs intermédiaires, l'équation \(\varphi(x) = 0 \) admet une unique solution \(\alpha \) sur \([1 ; +\infty[\).

On trouve \(1,793 \leq \alpha \leq 1,794 \).

3. | \(x \) | \(-\infty \) | 0 | \(\alpha \) | +\(\infty \) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi(x))</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Partie B : étude de la position relative de deux courbes

1. $f(0) = 1$ et $g(0) = 1$ donc les deux courbes passent par $A(0 ; 1)$.

De plus,

$$f'(x) = (1 - 2x)e^{-x} \quad \text{et} \quad g'(x) = \frac{-2x^2 - 2x + 1}{(x^2 + x + 1)^2}$$

donc $f'(0) = 1$ et $g'(0) = 1$; ainsi, les deux courbes ont la même tangente en A.

2. \(a.\) $f(x) - g(x) = (2x + 1)e^{-x} - \frac{2x + 1}{x^2 + x + 1}$

$$= (2x + 1)\left(\frac{(x^2 + x + 1)e^{-x} - 1}{x^2 + x + 1}\right)$$

$$f(x) - g(x) = \frac{(2x + 1)\varphi(x)}{x^2 + x + 1}$$

\(b.\) \begin{array}{|c|c|c|c|c|c|}
\hline
x & -\infty & -\frac{1}{2} & 0 & \alpha & +\infty \\
\hline
\varphi(x) & + & + & \emptyset & + & \emptyset & - \\
2x + 1 & - & \emptyset & + & + & + & - \\
f(x) - g(x) & - & \emptyset & + & \emptyset & + & \emptyset & - \\
\hline
\end{array}

c. De ce dernier tableau, on déduit que $f(x) > g(x)$ sur $\left]-\frac{1}{2} ; \alpha\right]$, donc que C_f est au-dessus de C_g sur cet intervalle.

Corrigé de l’exercice 14.

1. Le domaine de définition de f est centré en 0.

De plus, pour tout réel x, $f(-x) = \frac{e^{-x} - e^x}{e^{-x} + e^x} = -\frac{e^x - e^{-x}}{e^x + e^{-x}} = -f(x)$.

f est donc impaire.

2. $f(x) = \frac{e^x(1 - e^{-2x})}{e^x(1 + e^{-2x})} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$.

$$\lim_{x \to +\infty} (-2x) = -\infty \quad \lim_{x \to -\infty} e^x = 0 \quad \Rightarrow \quad \lim_{x \to +\infty} f(x) = 1.$$

3. f est de la forme $\frac{u}{v}$ avec $u(x) = e^x - e^{-x}$ et $v(x) = e^x + e^{-x}$.

Ainsi, $f' = \frac{u'v - uv'}{v^2}$ avec $u'(x) = e^x + e^{-x} = v(x)$ et $v'(x) = e^x - e^{-x} = u(x)$.

40
On a alors :

\[f'(x) = \frac{[v(x)]^2 - [u(x)]^2}{[v(x)]^2} = \frac{[v(x) - u(x)] [v(x) + u(x)]}{[v(x)]^2} = \frac{2e^{-2x} \times 2e^{2x}}{(e^x + e^{-x})^2} \]

\[f'(x) = \frac{4}{(e^x + e^{-x})^2} \]

Ainsi, \(f'(x) > 0 \) sur \(\mathbb{R} \), ce qui signifie que \(f \) est strictement croissante sur \(\mathbb{R} \).

\(f'(0) = \frac{4}{(1+1)^2} = 2 \) et \(f(0) = 0 \) donc l'équation réduite de la tangente à la courbe représentative de \(f \) au point d'abscisse 0 est \(y = 2x \).
Logarithme népérien

A Exercices d’application du cours
B Exercices de réflexion
C Exercice & corrigé relus avec attention pour éviter les erreurs

Opérations algébriques

■ Exercice 1. Simplification d’écritures
(Source : ts-ln-13)

Simplifiez au maximum :

1. \(\ln 8 - \ln 2 \)
2. \(\ln 6 + \ln 3 \)
3. \(\ln 25 - \ln 30 + \ln 10 \)
4. \(\ln 50 + \ln 2 - \ln 10 \)
5. \(3 \ln 4 - \ln 256 \)
6. \(2 \ln 2 - \ln 16 + \ln 128 \)

7. \(\ln e^{2x} \)
8. \(\ln e^{2x-4} - \ln e^{2x+4} \)
9. \(\frac{3 \ln e^{x+1}}{2 \ln e^{1-x}} \)

■ Exercice 2. Équations
(Source : ts-ln-14)

Résoudre les équations suivantes :

1. \(\ln(3x - 4) = \ln(2x + 1) \)
2. \(\ln(4 - 2x) = \ln(x - 1) \)
3. \(\ln(x^2 + x + 1) = \ln(x^2 - 2x + 1) \)
4. \(\ln(2x^2 - 10x + 8) = \ln(3x^2 - 3x - 18) \)
5. \((\ln x)^2 - 3 \ln x + 2 = 0 \)
6. \(2(\ln x)^2 - 5 \ln x - 3 = 0 \)

■ Exercice 3. Inéquations
(Source : ts-ln-15)

Résoudre les inéquations suivantes :

1. \(\ln(5x + 20) > \ln(3x - 9) \)
2. \(\ln(8 - 2x) \leq \ln(5x - 25) \)
3. \(\ln(x^2 + 1) < \ln(2x^2 + x + 2) \)
4. \(\ln(2x^2 - 3x + 1) > \ln(-5x^2 + 8x - 3) \)
5. \(\ln(x^2 - 5x - 14) \geq \ln(2x^2 - 10x + 8) \)
6. \(\ln(x^2 + x - 6) > \ln(-2x^2 + 14x + 16) \)
Calculs de limites

■ Exercice 4. Limites
(Source : ts-ln-01)

Pour cet exercice, il ne faudra pas hésiter à prendre des initiatives.
On considère la fonction f définie sur \mathbb{R}^* par :

$$f(x) = \frac{x-1}{x^2} \ln (x^2 + 1).$$

1. Calculer $\lim_{x \to 0} f(x)$.
2. Calculer $\lim_{x \to +\infty} f(x)$.
 Indice : on pourra démontrer que, pour tout réel x positif, $\ln(1 + x) \leq x$ en étudiant la fonction $g(x) = \ln(1 + x) - x$. Cela pourra nous servir dans notre raisonnement.
3. Calculer $\lim_{x \to -\infty} f(x)$.

■ Exercice 5. Limites
(Source : ts-ln-02)

Calculer les limites suivantes :

1. $\lim_{x \to -\infty} \left(\frac{\ln \sqrt{x^2 - 1}}{x^2 - 1} \right)$.
2. $\lim_{x \to 1} \left(\frac{\ln (x^2 - 2x + 2)}{(x - 1)^2} \right)$.
3. $\lim_{x \to +\infty} \left(\frac{\ln \left(1 - \frac{1}{x^2}\right)}{\ln \left(1 + \frac{1}{x}\right)} \right)$.
4. $\lim_{x \to 0} \left(\frac{\ln (1 + \sqrt{x})}{1 - \sqrt{x + 1}} \right)$.

■ Exercice 6. Démonstration de cours : $\lim_{x \to +\infty} \frac{\ln x}{x}$
(Source : ts-ln-05)

On considère la fonction f définie par :

$$f(x) = \ln x - x.$$

1. Étudier les variations de f sur $[1; +\infty[$.
2. En déduire que pour $x \geq 1$, $0 \leq \ln x < x$.
3. Déduire alors que pour $x \geq 1$, $0 \leq \frac{\ln x}{2x} < \frac{1}{\sqrt{x}}$.
4. Calculer alors $\lim_{x \to +\infty} \left(\frac{\ln x}{x} \right)$.
Dérivation & étude de fonctions

■ Exercice 7. Calculs de dérivées
(Source : ts-ln-03)
Calculer la dérivée des fonctions suivantes :

1. \(f_1(x) = x \ln x - x \)
2. \(f_2(x) = \frac{\ln x}{x} \)
3. \(f_3(x) = \ln (x^2) \)
4. \(f_4(x) = \ln \sqrt{x + 1} \)
5. \(f_5(x) = \frac{\ln (x^2 + 1)}{x^2 + 1} \)
6. \(f_6(x) = \ln (\ln x) \)

■ Exercice 8. Fonction \(f : x \mapsto \frac{\ln(x^2+1)}{x^2+1} \) sans consignes
(Source : ts-ln-04)
Étudier la fonction \(f \) définie sur \(\mathbb{R} \) par :

\[f(x) = \frac{\ln(x^2+1)}{x^2+1}. \]

■ Exercice 9. Fonction \(f : x \mapsto \ln \left(1 + \frac{1}{x}\right) \)
(Source : ts-ln-06)
On considère la fonction \(f \) définie par :

\[f(x) = \ln \left(1 + \frac{1}{x}\right). \]

1. Déterminer son domaine de définition.
2. Calculer \(f'(x) \) puis déterminer le sens de variation de \(f \) sur son domaine de définition.
3. Déterminer les limites de \(f(x) \) aux bornes de son domaine de définition.
 Dresser un tableau de variations complet de la fonction \(f \).

■ Exercice 10. Fonction \(f : x \mapsto (x + 1) \ln(x^2 - 2x + 1) \)
(Source : ts-ln-07)
On considère la fonction \(f \) définie par :

\[f(x) = (x - 1) \ln (x^2 - 2x + 1). \]

1. Donner le domaine de définition de \(f \). On le notera \(\mathcal{D} \).
2. Calculer les limites de \(f \) aux bornes de \(\mathcal{D} \).
3. Calculer \(f'(x) \).
4. Trouver le signe de \(f'(x) \) sur \(\mathcal{D} \), puis en déduire les variations de \(f \) sur \(\mathcal{D} \).
 Dresser un tableau de variations complet de \(f \).
Exercice 11. Comparaison de \(e^\pi \) et \(\pi^e \)

(Source : ts-ln-08)

On considère la fonction \(f \) définie pour tout réel \(x \) strictement positif par :

\[
f(x) = e \ln x - x.
\]

1. Calculer \(\lim_{x \to 0} f(x) \).
2. Calculer \(\lim_{x \to +\infty} f(x) \).
3. Calculer \(f'(x) \) et étudier les variations de \(f \). Dresser un tableau de variations de \(f \).
4.Comparer alors les nombres \(\pi^e \) et \(e^\pi \).

Exercice 12. Concentration de bactéries dans le corps

(Source : ts-ln-09)

Lorsque l'on prend des antibiotiques, la concentration de bactéries présentes dans le corps d'une personne malade diminue avec le temps en suivant le modèle d'une fonction \(f \) définie, pour \(0 \leq t \leq 6 \), par :

\[
f(t) = ae^{kt} + b,
\]

où \(t \) désigne le temps (exprimé en jour) et où \(f(t) \) représente le taux de bactéries restantes.
Ainsi, \(f(0) = 1 \). On suppose que la totalité des bactéries sont éliminées après 6 jours. Donc \(f(6) = 0 \).

1. Montrer que \(f(t) = ae^{\frac{1}{3}\ln(1-\frac{1}{x})}t + 1 - a \).
2. On sait que 50 \% des bactéries disparaissent au bout de deux jours.
 En déduire que \(ae^{\frac{1}{3}\ln(1-\frac{1}{x})} + \frac{1}{2} - a = 0 \).

Pour tout nombre réel \(x > 1 \), on pose :

\[
g(x) = xe^{\frac{1}{3}\ln(1-\frac{1}{x})} - x + \frac{1}{2}.
\]

3. Montrer que \(g'(x) = \left(1 + \frac{1}{3x-3}\right)e^{\frac{1}{3}\ln(1-\frac{1}{x})} - 1 \).
4. a. Calculer \(\lim_{x \to +\infty} g'(x) \).
 b. On admet que \(g''(x) = \frac{-2}{9x(x-1)}e^{\frac{1}{3}\ln(1-\frac{1}{x})} \).
 En déduire les variations de la fonction \(g' \) puis celles de la fonction \(g \) sur \([1; +\infty[\).

5. Montrer alors que l'équation \(g(x) = 0 \) admet une unique solution, notée \(\alpha \), sur \([1, 3 ; 1, 4[\). On admet que \(\alpha \approx 1,309 \).
Exercice 13. Fonction \(f : x \mapsto (x^2 + 1) \ln x - x \)
(Source : ts-ln-10)

Partie A : Étude d’une fonction auxiliaire

On considère la fonction \(h \) définie sur \(]0 ; +\infty[\) par :

\[
h(x) = \ln x + \frac{x^2 - x + 1}{2x^2}.
\]

1. Montrer que sa dérivée est : \(h'(x) = \frac{2x^2 + x - 2}{2x^3} \).

2. Étudier le signe de \(h'(x) \) sur \(]0 ; +\infty[\).

3. Dresser un tableau de variation de \(h \) sur \(]0 ; +\infty[\). En déduire le signe de \(h(x) \) sur \(]0 ; +\infty[\).

Partie B : Étude d’une fonction

On considère la fonction \(f \) définie sur \(]0 ; +\infty[\) par :

\[
f(x) = (x^2 + 1) \ln x - x.
\]

1. Calculer sa dérivée puis montrer l’équivalence suivante :

\[
f'(x) > 0 \iff h(x) > 0.
\]

2. En déduire les variations de \(f \) sur \(]0 ; +\infty[\).

3. a. Déterminer \(\lim_{x \to 0} f(x) \).

 b. Déterminer \(\lim_{x \to +\infty} f(x) \).

 c. Dresser un tableau de variation complet de la fonction \(f \) sur \(]0 ; +\infty[\).

4. a. Montrer que l’équation \(f(x) = 0 \) admet une unique solution, que l’on notera \(\alpha \), sur \(]0 ; +\infty[\).

 b. Montrer que \(\alpha \) appartient à l’intervalle \(]1 ; 2[\).

 c. Donner une valeur approchée de \(\alpha \) à \(10^{-1} \) près.
Exercice 14. Équation \(\mathrm{e}^{x} - \ln x = 0 \)

(Source : ts-lín-12)

On considère la fonction définie sur \([0; +\infty[\) par :

\[
f(x) = \mathrm{e}^{x} - \ln x
\]

et sa courbe représentative \(C\) dans un plan rapporté à un repère orthonormé \((\mathrm{O}; \vec{i}, \vec{j})\).

1. a. Étudier les variations de la fonction \(g\) définie sur \([0; +\infty[\) par :

\[
g(x) = xe^{x} - 1.
\]

b. En déduire qu’il existe un réel positif unique \(\alpha\) tel que : \(\alpha e^{\alpha} = 1\). Donner un encadrement de \(\alpha\) d’amplitude \(10^{-3}\).

c. Préciser le signe de \(g(x)\) selon les valeurs de \(x\).

2. a. Déterminer les limites de \(f\) aux bornes de \([0; +\infty[\).

b. Calculer la fonction dérivée \(f'\) de \(f\) et étudier son signe sur \([0; +\infty[\) en utilisant la question 1. Dresser le tableau de variations de \(f\).

c. Montrer que \(f\) admet un minimum \(m\) égal à \(\alpha + \frac{1}{\alpha}\). Justifier que : \(2,32 \leq m \leq 2,34\).

3. Donner une équation de la tangente \(T\) à \(C\) en son point d’abscisse 1. Déterminer le point d’intersection de \(T\) et de l’axe des abscisses.

4. Tracer \(C\) et \(T\).

Exercice 15. Étude de la fonction \(f(x) = \ln x + xe^{x/2}\)

(Source : ts-lín-17)

Partie A

On considère la fonction \(g\) définie sur \([0; +\infty[\) par :

\[
g(x) = 1 - xe - 2\ln x
\]

1. Déterminer \(\lim_{x \to 0} g(x)\) et \(\lim_{x \to +\infty} g(x)\).

2. Déterminer les variations de \(g\) sur \([0; +\infty[\).

3. Montrer que l’équation \(g(x) = 0\) admet une unique solution sur \([\frac{1}{2}; 1]\).

On notera \(\alpha\) cette solution et on en donnera une valeur approchée à 0,01 près.

4. Donner alors le signe de \(g(x)\) sur \([0; +\infty[\).

Partie B

On considère la fonction \(f\) définie sur \([0; +\infty[\) par :

\[
f(x) = \frac{\ln x + xe}{x^2}
\]
1 Déterminer $\lim_{x \to 0} f(x)$ et $\lim_{x \to +\infty} f(x)$.
2 Montrer que :
 $$f'(x) = \frac{g(x)}{x^3}$$
 et en déduire les variations de f sur $[0 ; +\infty[$.
3 Montrer que $f(\alpha) = \frac{1 + \alpha e}{2\alpha^2}$.

Exercice 16. Fonction $f : x \mapsto \frac{2\ln x}{x[(\ln x)^2 + 1]}$ avec intégrale à la fin
(Source : ts-ln-11)

Partie A

Soit le polynôme $P(x) = x^3 + x^2 + x - 1$.
1 Déterminer $P'(x)$, puis en déduire les variations de P sur \mathbb{R}.
2 Montrer que l’équation $P(x) = 0$ admet une unique solution, notée α, sur $\left[\frac{1}{2} ; 1\right[$.
3 En déduire le signe de $P(x)$ sur \mathbb{R}.

Partie B

On considère la fonction f définie sur $]\alpha ; +\infty[\,$ par :
$$f(x) = \frac{2\ln x}{x[(\ln x)^2 + 1]}.$$
1 Montrer que la dérivée de f est $f'(x) = -2\frac{(\ln x)^3 + (\ln x)^2 + \ln x - 1}{x^2[(\ln x)^2 + 1]^2}$.
2 À l’aide de la partie A, montrer que $f'(x)$ est négatif sur $]\alpha ; +\infty[\,$.
3 Calculer $\lim_{x \to 0} f(x)$ et $\lim_{x \to +\infty} f(x)$.
4 Dresser un tableau de variation complet de la fonction f sur $]\alpha ; +\infty[\,$ (on ne calculera pas $f(\alpha)$).
5 En remarquant que $f(x) = \frac{2\ln x}{(\ln x)^2 + 1}$, déterminer une expression en fonction du réel t supérieur ou égal à 1 de l’intégrale :
 $$I(t) = \int_1^t f(x) \, dx.$$
6 Déterminer la valeur exacte puis approchée à 0,01 près de t tel que $I(t) = 1$.

Corrigé page 69
Exercice 17. Étude de la fonction \(f(x) = \frac{x \ln x}{x^2 + 1} \)

(Source : ts-ln-16)

L’objectif de cet exercice est d’étudier la fonction \(f \) définie sur \([0 ; +\infty[\) par :

\[f(x) = \frac{x \ln x}{x^2 + 1} \]

Pour cela, on considère les fonctions \(g \) et \(h \) définies sur \([0 ; +\infty[\) par :

\[g(x) = (1 - x^2) \ln x + x^2 + 1 \quad \text{et} \quad h(x) = x^2(1 - 2 \ln x) \]

1. a. Calculer \(h'(x) \) puis en déduire les variations de la fonction \(h \) sur \([0 ; +\infty[\).

 b. Montrer qu’il existe une unique valeur \(\alpha > 1 \) telle que \(h(\alpha) = 0 \). Donner une valeur approchée de \(\alpha \) à 0,001 près.

 c. En déduire le signe de \(h(x) \) sur \([0 ; +\infty[\).

2. a. En vous aidant de la question précédente, trouver les variations de \(g \) sur \([0 ; +\infty[\).

 b. En déduire que l’équation \(g(x) = 0 \) admet deux solutions \(\beta \) et \(\gamma \) telles que \(0 < \beta < 1 \) et \(\gamma > \alpha \), avec \(\gamma = \frac{1}{\beta} \).

3. Déduire de la question précédente les variations de \(f \) sur \([0 ; +\infty[\).

4. Montrer que \(f(\beta) = -f(\gamma) \).
Corrigés de l’exercice 1.

1. $\ln 8 - \ln 2 = \ln \left(\frac{8}{2}\right) = \ln 4$ (que l’on peut aussi mettre sous la forme $2 \ln 2$).

2. $\ln 6 + \ln 3 = \ln (6 \times 3) = \ln 18$.

3. $\ln 25 - \ln 30 + \ln 10 = \ln \left(\frac{25}{30} \times 10\right) = \ln \frac{25}{3}$.

4. $\ln 50 + \ln 2 - \ln 10 = \ln \left(\frac{50 \times 2}{10}\right) = \ln 10$.

5. $3 \ln 4 - \ln 256 = 3 \ln \left(2^2\right) - \ln \left(2^8\right) = 6 \ln 2 - 8 \ln 2 = -2 \ln 2$.

6. $2 \ln 2 - \ln 16 + \ln 128 = 2 \ln 2 - \ln 2^4 + \ln 2^7 = 2 \ln 2 - 4 \ln 2 + 7 \ln 2 = 5 \ln 2$.

7. $\ln e^{2x} = 2x$.

8. $\ln e^{2x-4} - \ln e^{2x+4} = 2x - 4 - (2x + 4) = -8$.

9. $\frac{3 \ln e^{x+1}}{2 \ln e^{1-x}} = \frac{3(x + 1)}{2(1 - x)} = \frac{3x + 3}{2 - 2x}$.

Corrigé de l’exercice 2.

1. $\ln (3x - 4) = \ln (2x + 1)$.

- **Domaine de définition** : il faut que $\begin{cases} 3x - 4 > 0 \\ 2x + 1 > 0 \end{cases}$, soit $\begin{cases} x > \frac{4}{3} \\ x > -\frac{1}{2} \end{cases}$, donc que $x > \frac{4}{3}$.

- **Résolution** : $\ln (3x - 4) = \ln (2x + 1) \iff 3x - 4 = 2x + 1 \iff x = 5$.

$5 > \frac{4}{3}$ donc l’ensemble solution est $\mathcal{E} = \{5\}$.
2 \(\ln(4 - 2x) = \ln(x - 1) \).

- **Domaine de définition** : il faut que \(\begin{cases} 4 - 2x > 0 \\ x - 1 > 0 \end{cases} \), soit \(\begin{cases} x < 2 \\ x > 1 \end{cases} \), donc que \(1 < x < 2 \).

- **Résolution** :
 \[\ln(4 - 2x) = \ln(x - 1) \iff 4 - 2x = x - 1 \iff 5 = 3x \iff x = \frac{5}{3} . \]
 \(1 < \frac{5}{3} < 2 \) donc l’ensemble solution de l’équation est \(\mathcal{S} = \left\{ \frac{5}{3} \right\} \).

3 \(\ln(x^2 + x + 1) = \ln(x^2 - 2x + 1) \).

- **Domaine de définition** : il faut que \(\begin{cases} x^2 + x + 1 > 0 \\ x^2 - 2x + 1 > 0 \end{cases} \).
 Or, le discriminant de \(x^2 + x + 1 \) est égal à \(-3\) donc ce polynôme est toujours strictement positif.
 De plus, \(x^2 - 2x + 1 = (x - 1)^2 \) donc seul \(x = 1 \) ne convient pas.
 Le domaine de définition est donc \(\mathcal{D} = \mathbb{R} \setminus \{1\} \).

- **Résolution** :
 \[\ln(x^2 + x + 1) = \ln(x^2 - 2x + 1) \iff x^2 + x + 1 = x^2 - 2x + 1 \iff 3x = 0 \iff x = 0 . \]
 \(0 \in \mathcal{D} \) donc l’ensemble solution de l’équation est \(\mathcal{S} = \{0\} \).

4 \(\ln(2x^2 - 10x + 8) = \ln(3x^2 - 3x - 18) \).

- **Domaine de définition** : il faut que \(\begin{cases} 2x^2 - 10x + 8 > 0 \\ 3x^2 - 3x - 18 > 0 \end{cases} \).
 Le discriminant de \(2x^2 - 10x + 8 = \Delta_1 = 100 - 64 = 36 \) et donc ses racines sont \(\frac{10 - 6}{4} = 1 \) et \(\frac{10 + 6}{4} = 4 \).
 Le polynôme est donc strictement positif sur \(]-\infty ; 1[\cup]4 ; +\infty[\).
 Le discriminant de \(3x^2 - 3x - 18 = \Delta_2 = 9 + 216 = 225 \) et donc ses racines sont \(\frac{3 - 15}{6} = -2 \) et \(\frac{3 + 15}{6} = 3 \).
 Le polynôme est donc strictement positif sur \(]-\infty ; -2[\cup]3 ; +\infty[\).
 Le domaine de définition est donc \(\mathcal{D} =]-\infty ; -2[\cup]3 ; +\infty[\).

- **Résolution** :
 \[\ln(2x^2 - 10x + 8) = \ln(3x^2 - 3x - 18) \iff 2x^2 - 10x + 8 = 3x^2 - 3x - 18 \iff x^2 + 7x - 26 = 0 . \]
 Le discriminant de \(x^2 + 7x - 26 = \Delta = 49 + 104 = 153 \) donc il admet deux racines \(\frac{-7 - \sqrt{153}}{2} \in \mathcal{D} \) et \(\frac{-7 + \sqrt{153}}{2} \notin \mathcal{D} \).
 L’ensemble solution de l’équation est donc \(\mathcal{S} = \left\{ \frac{-7 - \sqrt{153}}{2} \right\} \).
5 \((\ln x)^2 - 3 \ln x + 2 = 0\). Posons \(X = \ln x\).

L’équation devient : \(X^2 - 3X + 2 = 0\) et admet pour solutions \(X = 1\) et \(X = 2\).

Ainsi, \(\ln x = 1\) ou \(\ln x = 2\), soit \(x = e\) ou \(x = e^2\).

L’ensemble solution est donc \(\mathcal{S} = \{e ; e^2\}\).

6 \(2(\ln x)^2 - 5 \ln x - 3 = 0\). Posons \(X = \ln x\).

L’équation devient \(2X^2 - 5X - 3 = 0\) et admet pour solutions \(X = 3\) et \(X = -\frac{1}{2}\).

Ainsi, \(\ln x = 3\) ou \(\ln x = -\frac{1}{2}\), soit \(x = e^3\) ou \(x = e^{-0.5} = \frac{1}{\sqrt{e}}\).

L’ensemble solution est donc \(\mathcal{S} = \{e^3 ; e^{-0.5}\}\).

■ Corrigé de l’exercice 3.

1 \(\ln(5x + 20) > \ln(3x - 9)\).

- **Domaine de définition** : il faut que \(\begin{cases} 5x + 20 > 0 \\ 3x - 9 > 0 \end{cases}\), soit \(x > 3\).

 Le domaine de définition est donc \(\mathcal{D} =]3 ; +\infty[\).

- **Résolution** :
 \[
 \ln(5x + 20) > \ln(3x - 9) \\
 \quad \iff 5x + 20 > 3x - 9 \\
 \quad \iff 2x > -29 \\
 \quad \iff x > -\frac{29}{2}.
 \]

 Notons \(\mathcal{U} = \left]-\frac{29}{2} ; +\infty\right[\); alors, l’ensemble solution de l’inéquation est \(\mathcal{U} \cap \mathcal{D}\), soit \(\mathcal{S} =]3 ; +\infty[\).

2 \(\ln(8 - 2x) \leq \ln(5x - 25)\).

- **Domaine de définition** : il faut que \(\begin{cases} 8 - 2x > 0 \\ 5x - 25 > 0 \end{cases}\), soit \(\begin{cases} x < 4 \\ x > 5 \end{cases}\), donc le domaine de définition est \(]-\infty ; 4[\cup]5 ; +\infty[\).

- **Résolution** :
 \[
 \ln(8 - 2x) \leq \ln(5x - 25) \\
 \quad \iff 8 - 2x \leq 5x - 25 \\
 \quad \iff 8 + 25 \leq 5x + 2x \\
 \quad \iff 7x \geq 33 \\
 \quad \iff x \geq \frac{33}{7}.
 \]

 Notons \(\mathcal{U} = \left[\frac{33}{7} ; +\infty\right[\); l’ensemble solution de l’inéquation est alors \(\mathcal{U} \cap \mathcal{D}\), soit \(\mathcal{S} =]5 ; +\infty[\).
\[\ln(x^2 + 1) < \ln(2x^2 + x + 2). \]

- **Domaine de définition** : il faut que \(\begin{cases} x^2 + 1 > 0 \\ 2x^2 + x + 2 > 0 \end{cases} \), ce qui est toujours le cas car le discriminant des polynômes \(x^2 + 1 \) et \(2x^2 + x + 2 \) sont strictement négatifs. Le domaine de définition est donc \(\mathbb{R} \).

- **Résolution** : \(\ln(x^2 + 1) < \ln(2x^2 + x + 2) \)
 \[\iff x^2 + 1 < 2x^2 + x + 2 \]
 \[\iff x^2 + x + 1 > 0. \]
 Le discriminant de \(x^2 + x + 1 \) étant strictement négatif, tout réel \(x \) convient.
 L'ensemble solution de cette inéquation est donc \(\mathcal{S} = \mathbb{R} \).

\[\ln(2x^2 - 3x + 1) > \ln(-5x^2 + 8x - 3). \]

- **Domaine de définition** : les racines de \(2x^2-3x+1 \) sont 1 et \(\frac{1}{2} \); ainsi, \(2x^2-3x+1 > 0 \) sur \(I =]-\infty; \frac{1}{2}[\cup]1; +\infty[. \)

 Les racines de \(-5x^2 + 8x - 3 \) sont 1 et \(\frac{3}{5} \) donc \(-5x^2 + 8x - 3 > 0 \) sur \(J =]\frac{3}{5}; 1[. \)
 Le domaine de définition est donc \(I \cap J = \emptyset \).

- **Résolution** : le domaine de définition étant l’ensemble vide, il ne peut y avoir de solutions à cette inéquation. Donc \(\mathcal{S} = \emptyset \).

\[\ln(x^2 - 5x - 14) \geq \ln(2x^2 - 10x + 8). \]

- **Domaine de définition** : le polynôme \(x^2 - 5x - 14 \) admet pour racines \(-2\) et 7 donc il est strictement positif sur \(I =]-\infty; -2[\cup]7; +\infty[. \)

 Le polynôme \(2x^2 - 10x + 8 \) admet pour racines 4 et 1 donc il est strictement positif sur \(J =]-\infty; 1[\cup]4; +\infty[. \).

 Le domaine de définition est donc \(I \cap J = \emptyset \), soit \(\mathcal{D} =]-\infty; -2[\cup]7; +\infty[. \)

- **Résolution** : \(\ln(x^2 - 5x - 14) \geq \ln(2x^2 - 10x + 8) \)
 \[\iff x^2 - 5x - 14 \geq 2x^2 - 10x + 8 \]
 \[\iff x^2 - 5x + 22 \leq 0. \]
 Le discriminant de \(x^2 - 5x + 22 \) est \(\Delta = 25 - 108 < 0 \) donc le polynôme est toujours strictement positif.

 L'ensemble solution de l’inéquation est donc \(\mathcal{S} =]-\infty; -2[\cup]7; +\infty[. \)

\[\ln(x^2 + x - 6) > \ln(-2x^2 + 14x + 16). \]

- **Domaine de définition** : le polynôme \(x^2 + x - 6 \) admet pour racines 2 et \(-3\) donc il est strictement positif sur \(I =]-\infty; -3[\cup]2; +\infty[. \)

 Le polynôme \(-2x^2 + 14x + 16 \) admet pour racines \(-1\) et 8 donc il est strictement positif sur \(J =]-1; 8[. \).

 Le domaine de définition est donc \(I \cap J \), soit \(\mathcal{D} =]2; 8[. \).
• Résolution : \[\ln(x^2 + x - 6) > \ln(-2x^2 + 14x + 16) \]
\[\iff x^2 + x - 6 > -2x^2 + 14 + 16 \]
\[\iff 3x^2 - 13x - 22 > 0. \]
Le discriminant du polynôme \(3x^2 - 13x - 22 \) est \(\Delta = 169 + 12 \times 22 = 433 \) donc il admet deux racines : \(x_1 = \frac{13 - \sqrt{433}}{6} \notin \mathcal{D} \) et \(x_2 = \frac{13 + \sqrt{433}}{6} \in \mathcal{D}. \)
Ainsi, \(3x^2 - 13x - 22 > 0 \) sur \(\mathcal{U} =]-\infty ; x_1[\cup]x_2 ; +\infty[. \)

L’ensemble solution de l’inéquation est donc \(\mathcal{U} \cap \mathcal{D} \), soit \[\mathcal{S} = \left\{ \frac{13 + \sqrt{433}}{6} ; 8 \right\}. \]

Corrigé de l’exercice 4.

1 Nous savons que \(\lim_{x \to 0} \frac{\ln(x + 1)}{x} = 1. \) Ainsi, en posant \(X = x^2 \), on a :
\[\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x^2} = 1. \]
De plus, \(\lim_{x \to 0} (x - 1) = -1 \), donc \(\lim_{x \to 0} \left((x - 1) \frac{\ln(x^2 + 1)}{x^2} \right) = -1. \)
Ainsi, \(\lim_{x \to 0} f(x) = -1. \)

2 Nous pouvons écrire, sur \(\mathbb{R}^* \) :
\[f(x) = \ln(x^2 + 1) - \ln(x^2 + 1) \times \frac{x^2 + 1}{x^2}, \]

\[\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0, \] donc en posant \(X = x^2 + 1 \), nous avons :
\[\lim_{x \to +\infty} \frac{\ln(x^2 + 1)}{x^2 + 1} = 0. \]
De plus, \(\lim_{x \to +\infty} \frac{x^2 + 1}{x^2} = \lim_{x \to +\infty} \frac{x^2}{x^2} = 1. \)
Ainsi,
\[\lim_{x \to +\infty} \left(\frac{\ln(x^2 + 1)}{x^2} \times \frac{x^2 + 1}{x^2} \right) = 0. \] (III.1)

\[\ln(x^2 + 1) = \ln \left(x^2 \left(1 + \frac{1}{x^2} \right) \right) = 2 \ln x + \ln \left(1 + \frac{1}{x^2} \right). \]
Ainsi, \(\frac{\ln(x^2 + 1)}{x} = 2 \ln x + \frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right). \)
Posons \(g(x) = \ln(1 + x) - x, \) pur \(x \geq 0. \)
Alors, \(g'(x) = \frac{1}{1 + x} - 1 < 0 \) pour \(x \geq 0 \) donc \(g \) est décroissante sur \([0 ; +\infty[. \)
De plus, \(g(0) = 0 \) donc cela signifie que \(g(x) \leq 0 \) sur \([0 ; +\infty[. \)
Ainsi, pour \(x \geq 0, \ln(1 + x) \leq x \) et donc \(\ln \left(1 + \frac{1}{x^2} \right) \leq \frac{1}{x^2} \), soit \(\frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right) \leq \frac{1}{x^3}. \)
\[\frac{1}{x} > 0 \text{ donc } 1 + \frac{1}{x^2} > 1, \text{ d'où } \ln \left(1 + \frac{1}{x^2} \right) > 0 \text{ et finalement } \frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right) > 0. \]
Ainsi, \(0 < \frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right) \leq \frac{1}{x^3} \).

On en déduit alors que \(\lim_{x \to +\infty} \left[\frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right) \right] = 0 \) (théorème des gendarmes).

De plus, \(\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \) donc

\[
\lim_{x \to +\infty} \frac{\ln (x^2 + 1)}{x} = 0.
\]

(III.2)

- Finalement, des égalités (1) et (2), on en déduit :

\[
\lim_{x \to +\infty} f(x) = 0.
\]

3 D’après la question précédente,

\[
\lim_{x \to -\infty} \frac{\ln (x^2 + 1)}{x^2} = 0.
\]

(III.3)

De plus, en écrivant pour \(x < 0 \) :

\[
\frac{\ln (x^2 + 1)}{x} = 2 \frac{\ln |x|}{x} + \frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right),
\]

On a \(\lim_{x \to -\infty} \frac{\ln |x|}{x} = 0. \)

De plus, on a toujours \(0 < \ln \left(1 + \frac{1}{x^2} \right) \leq \frac{1}{x^2} \) et donc \(\frac{1}{x} \leq \frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right) < 0 \) pour \(x < 0. \)

Donc, \(\lim_{x \to -\infty} \frac{1}{x} \ln \left(1 + \frac{1}{x^2} \right) = 0 \) (théorème des gendarmes).

Finalement,

\[
\lim_{x \to -\infty} \frac{\ln (x^2 + 1)}{x} = 0.
\]

(III.4)

Alors,

\[
\lim_{x \to -\infty} f(x) = 0.
\]

□

Corrigé de l’exercice 5.

1 Nous savons que \(\lim_{x \to +\infty} \frac{\ln X}{X} = 0. \)

Posons \(X = \sqrt{x^2 - 1}. \) Alors, \(\lim_{x \to -\infty} X = +\infty. \)

De plus, \(\ln \frac{\sqrt{x^2 - 1}}{x^2 - 1} = \frac{\ln X}{X^2} = \frac{\ln X}{X} \times \frac{1}{X}. \)

Ainsi, \(\lim_{x \to -\infty} \left(\frac{\ln \sqrt{x^2 - 1}}{x^2 - 1} \right) = \lim_{x \to +\infty} \left(\frac{\ln X}{X} \times \frac{1}{X} \right). \) Or, \(\lim_{X \to +\infty} \frac{1}{x} = \lim_{X \to +\infty} \frac{\ln X}{X} = 0. \) Ainsi,

\[
\lim_{x \to -\infty} \left(\frac{\ln \sqrt{x^2 - 1}}{x^2 - 1} \right) = 0.
\]
2 On pose $X = (x - 1)^2$.
Alors,
\[
\frac{\ln (x^2 - 2x + 2)}{(x - 1)^2} = \frac{\ln [(x - 1)^2 + 1]}{(x - 1)^2} = \frac{\ln (X + 1)}{X}.
\]
\[
\lim_{x \to 1} X = 0 \text{ donc } \lim_{x \to 1} \left(\frac{\ln (x^2 - 2x + 2)}{(x - 1)^2} \right) = \lim_{X \to 0} \frac{\ln (1 + X)}{X} = 1.
\]
Ainsi,
\[
\lim_{x \to 1} \left(\frac{\ln (x^2 - 2x + 2)}{(x - 1)^2} \right) = 1.
\]

3 Posons $f(X) = \ln (1 - X^2)$ et $g(x) = \ln (1 + X)$.
Alors, $f(0) = 1$ et $g(0) = 1$ et donc :
\[
\frac{f(X)}{g(X)} = \frac{f(X) - f(0)}{g(X) - g(0)} = \frac{f(X) - f(0)}{X - 0} \times \frac{X - 0}{g(X) - g(0)}
\]
Par conséquent,
\[
\lim_{X \to 0} \frac{f(X)}{g(X)} = \lim_{X \to 0} \frac{f(X) - f(0)}{X - 0} \times \frac{X - 0}{g(X) - g(0)} = f'(0)
\]
Or, $\lim_{X \to 0} \frac{f(X) - f(0)}{X - 0} = f'(0)$ et $\lim_{X \to 0} \frac{X - 0}{g(X) - g(0)} = \frac{1}{g'(0)}$.
\[
f'(X) = \frac{-2X}{1 - X^2} \text{ et } g'(X) = \frac{1}{1 + X}.
\]
Ainsi,
\[
\lim_{X \to 0} \frac{f(X)}{g(X)} = \frac{f'(0)}{g'(0)} = \frac{0}{1} = 0.
\]
En posant $X = \frac{1}{x}$, avec $\lim_{x \to +\infty} X = 0$, on a :
\[
\lim_{x \to +\infty} \frac{\ln \left(\frac{1 - \frac{1}{x^2}}{1 + \frac{1}{x}} \right)}{\ln \left(\frac{1 + \frac{1}{x}}{1 - \frac{1}{x}} \right)} = 0.
\]

4 On peut écrire :
\[
\frac{\ln (1 + \sqrt{x})}{1 - \sqrt{x} + 1} = \frac{\ln (1 + \sqrt{x})}{\sqrt{x}} \times \frac{\sqrt{x}}{1 - \sqrt{x} + 1} \times \frac{1 + \sqrt{x} + 1}{1 + \sqrt{x} + 1}
\]
\[
= \frac{\ln (1 + \sqrt{x})}{\sqrt{x}} \times \frac{\sqrt{x}}{1 - \sqrt{x} + 1} \times \frac{1 + \sqrt{x} + 1}{\sqrt{x}}
\]
\[
= \frac{\ln (1 + \sqrt{x})}{\sqrt{x}} \times \left(\frac{1 + \sqrt{x} + 1}{\sqrt{x}} \right)
\]
\[
\lim_{x \to 0} \frac{\ln (1 + \sqrt{x})}{\sqrt{x}} = \lim_{X \to 0} \frac{\ln (1 + X)}{X} = 1
\]
\[
\Rightarrow \lim_{x \to 0} \frac{1 + \sqrt{x}}{\sqrt{x}} = -\infty
\]
\[
\Rightarrow \lim_{x \to 0} \frac{1 + \sqrt{x} + 1}{1 - \sqrt{x} + 1} = -\infty
\]
\[
\Rightarrow \lim_{x \to 0} \frac{\ln (1 + \sqrt{x})}{1 - \sqrt{x} + 1} = -\infty.
\]
Corrigé de l’exercice 6.

1. $f'(x) = \frac{1}{x} - 1$.
 Or, pour $x \geq 1$, $0 < \frac{1}{x} \leq 1$, et donc $f'(x) \leq 0$.
 La fonction f est donc décroissante sur $[1 ; +\infty[$.

2. $f(1) = -1$, donc $f(x) < 0$ sur $[1 ; +\infty[$. Donc $\ln x < x$ sur cet intervalle.
 De plus, on sait que pour $x \geq 1$, $\ln x \geq 0$.
 On en déduit alors que sur $[1 ; +\infty[$, $0 \leq \ln x < x$.

3. Posons $x = \sqrt{u}$, $u \geq 1$.
 Alors, de ce qui précède, on déduit que
 $$0 \leq \ln \sqrt{u} < \sqrt{u}.$$
 Ainsi, en divisant par u, on a :
 $$0 \leq \frac{\ln \sqrt{u}}{u} < \frac{\sqrt{u}}{u},$$
 on encore :
 $$0 \leq \frac{\frac{1}{2} \ln u}{u} < \frac{1}{\sqrt{u}}.$$
 Que l’on mette u ou x importe peu. Ainsi,
 $$\forall x \in [0 ; +\infty[, 0 \leq \frac{\ln x}{2x} < \frac{1}{\sqrt{x}}.$$

4. $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$ donc d’après le théorème des gendarmes, $\lim_{x \to +\infty} \frac{\ln x}{2x} = 0$.
 Multiplier par 2 l’expression ne change pas la limite, donc $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

57
Corrigé de l’exercice 7.

1. \(f_1(x) = x \ln x - x \) donc \(f_1'(x) = \ln x \).

2. \(f_2(x) = \frac{\ln x}{x} \) donc \(f_2'(x) = \frac{1 - \ln x}{x^2} \).

3. \(f_3(x) = \ln (x^2) \) donc \(f_3'(x) = \frac{2}{x} \).

4. \(f_4(x) = \ln \sqrt{x + 1} \) donc \(f_4'(x) = \frac{1}{2x + 2} \).

5. On pose \(u(x) = x^2 + 1 \). Donc \((\ln u)' = \frac{2x}{x^2 + 1} \).

On a alors \(f_5'(x) = \frac{2x}{x^2 + 1} \times (x^2 + 1) - 2x \ln (x^2 + 1) \times \frac{(x^2 + 1)^2}{(2x + 1)^2} \)

\(= \frac{2x [1 - \ln (x^2 + 1)]}{(x^2 + 1)^2} \)

6. \(f_6'(x) = \frac{1}{2} \frac{x}{\ln x} = \frac{1}{x \ln x} \).

Corrigé de l’exercice 8.

- \(f(-x) = f(x) \) et le domaine de définition de \(f \) est centré en 0.
 La fonction \(f \) est donc paire. On peut donc l’étudier sur \([0 ; +\infty[\).

- D’après l’exercice 6, \(f'(x) = \frac{2x [1 - \ln (x^2 + 1)]}{(x^2 + 1)^2} \).

\(\lim_{x \to +\infty} \left(x^2 + 1 \right) = +\infty \)

\(\lim_{x \to +\infty} \frac{\ln X}{X} = 0 \) \(\Rightarrow \) \(\lim_{x \to +\infty} f(x) = 0 \)

De plus, \(f(0) = \frac{\ln 1}{1} = 0 \).

- Sur \([0 ; +\infty[\), \(2x > 0 \) donc \(f'(x) \) est du signe de \(1 - \ln (x^2 + 1) \).
 \(1 - \ln (x^2 + 1) > 0 \iff \ln (x^2 + 1) < 1 \)
 \(\iff (x^2 + 1) < \ln e \)
 \(\iff x^2 + 1 < e \)
 \(\iff x^2 < e - 1 \)
 \(\iff 0 < x < \sqrt{e - 1} \)

On obtient alors le tableau de variations suivant sur \(\mathbb{R} \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(-\sqrt{e - 1})</th>
<th>0</th>
<th>(\sqrt{e - 1})</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>(f(x))</td>
<td>0</td>
<td>(e^{-1})</td>
<td>0</td>
<td>(e^{-1})</td>
<td>0</td>
</tr>
</tbody>
</table>
\[
f(\sqrt{e} - 1) = \frac{\ln(e - 1 + 1)}{e - 1 + 1} \\
= \frac{1}{e} \\
= e^{-1}
\]

- **Corrigé de l’exercice 9.**

1. Il faut que \(1 + \frac{1}{x} > 0\), ou encore \(\frac{x + 1}{x} > 0\). En étudiant le signe de ce quotient, on trouve :
 \[D_f = \mathbb{R} \setminus \{1\} =]-\infty ; -1[\cup]0 ; +\infty[.\]

2. \(f'(x) = \frac{-1}{1 + \frac{1}{x}} = \frac{-1}{x^2(1 + \frac{1}{x})}\).

 On sait que sur \(D_f\), \(1 + \frac{1}{x} > 0\) donc \(f'(x) < 0\).

 Ainsi, \(f\) est strictement décroissante sur \([0 ; +\infty[\) et sur \([-\infty ; -1[\).

3. \(\lim_{x \to -\infty} \frac{1}{x} = 0\) donc \(\lim_{x \to -\infty} \ln \left(1 + \frac{1}{x}\right) = \ln 1 = 0\).

 De même, \(\lim_{x \to +\infty} f(x) = 0\).

 \(\lim_{x \to -1} \frac{1}{x} = -1\) et \(\lim_{x \to -1} \left(1 + \frac{1}{x}\right) = 0^+\). Ainsi, \(\lim_{x \to -1} f(x) = -\infty\).

 \(\lim_{x \to 0} \frac{1}{x} = +\infty\) donc \(\lim_{x \to 0} f(x) = +\infty\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(-1)</th>
<th>0</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(\longleftarrow)</td>
<td>(-\infty)</td>
<td>(\longleftarrow)</td>
<td>(+\infty)</td>
</tr>
</tbody>
</table>

- **Corrigé de l’exercice 10.**

1. \(f\) est définie pour tout \(x\) tel que \(x^2 - 2x + 1 \neq 0\), c’est-à-dire lorsque \((x - 1)^2 \neq 0\).

 Ainsi, \(D = \mathbb{R} \setminus \{1\}\).

2. \(\lim_{x \to -\infty} (x-1) = -\infty\) et \(\lim_{x \to -\infty} \ln(x^2 - 2x + 1) = \lim_{x \to -\infty} \ln(x^2) = +\infty\) donc \(\lim_{x \to -\infty} f(x) = -\infty\).
• Par un raisonnement analogue, \(\lim_{x \to +\infty} f(x) = +\infty \).

• \(f(x) = (x - 1) \ln [(x - 1)^2] \).

\[\rightarrow \text{Si } x > 1, \quad f(x) = 2(x - 1) \ln(x - 1). \] En posant \(X = x - 1 \), on a \(f(X) = 2X \ln X \) avec \(X \to 0 \) quand \(x \to 1 \). Or, \(\lim_{x \to 1} X \ln X = 0 \). Ainsi, \(\lim_{x \to 1} f(x) = 0 \).

\[\rightarrow \text{Si } x < 1, \quad f(x) = -2(1 - x) \ln(1 - x). \] Par un raisonnement analogue à ce qui précède, en posant \(X = 1 - x \), \(\lim_{x \to 1} f(x) = 0 \).

\[f'(x) = \ln \left(x^2 - 2x + 1 \right) + (x - 1) \times \frac{2x - 2}{x^2 - 2x + 1} \]
\[= \ln \left((x - 1)^2 \right) + \frac{2(x - 1)^2}{(x - 1)^2} \]
\[f'(x) = \ln \left((x - 1)^2 \right) + 2 \]
4 \(f'(x) > 0 \Leftrightarrow \ln (x-1)^2 + 2 > 0 \)
\(\Leftrightarrow \ln (x-1)^2 > -2 \)
\(\Leftrightarrow (x-1)^2 > e^{-2} \)
\(\Leftrightarrow (x-1)^2 - (e^{-1})^2 > 0 \)
\(\Leftrightarrow (x-1-e^{-1})(x-1+e^{-1}) > 0 \)

\(f(1-e^{-1}) = (1-e^{-1} + 1) \ln [(1-e^{-1} - 1)^2] \)
\(= -e^{-1} \ln (e^{-2}) \)
\(= -e^{-1} \times (-2) \)
\(= 2e^{-1} \)

De même, \(f(1+e^{-1}) = -2e^{-1} \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(1-e^{-1})</th>
<th>1</th>
<th>(1+e^{-1})</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x-1-e^{-1})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(z)</td>
<td>+</td>
</tr>
<tr>
<td>(x-1+e^{-1})</td>
<td>-</td>
<td>(\emptyset)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>(\emptyset)</td>
<td>-</td>
<td>-</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

On en déduit alors :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(1-e^{-1})</th>
<th>1</th>
<th>(1+e^{-1})</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>(-\infty)</td>
<td>2e^{-1}</td>
<td>0</td>
<td>-2e^{-1}</td>
<td>(+\infty)</td>
</tr>
</tbody>
</table>

Corrigé de l'exercice 11.

1 On sait que \(\lim_{x \to 0} \ln x = -\infty \) donc \(\lim_{x \to 0} (e \ln x - x) = -\infty \)

2 On peut écrire :

\[f(x) = e^x \left(\frac{\ln x}{x} - 1 \right). \]

On sait que (croissance comparée) : \(\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \) donc \(\lim_{x \to +\infty} \left(\frac{\ln x}{x} - 1 \right) = -1. \)

Ainsi, \(\lim_{x \to +\infty} f(x) = -\infty \).
\[
\frac{d}{dx} e^x = e^x - 1 = e^{x-1} = e^{-x} \times x.
\]
Ainsi, sur \([0; e] , \frac{d}{dx} e^x > 0\) et sur \([e; +\infty] , \frac{d}{dx} e^x < 0\) d'où le tableau de variations suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>e</th>
<th>+\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(f)</td>
<td>-\infty</td>
<td>0</td>
<td>-\infty</td>
</tr>
</tbody>
</table>

4 On remarque sur le tableau précédent que pour tout réel \(x\) strictement positif et différent de \(e\), \(f(x) < 0\). Ainsi :

\[f(\pi) < 0, \]

C'est-à-dire :

\[e \ln \pi < \pi \]

Soit :

\[\ln \pi^e < \pi. \]

En composant par la fonction exponentielle, qui est strictement croissante, on a alors :

\[e^{\ln\pi^e} < e^\pi, \]

Soit :

\[\pi^e < e^\pi. \]

Corrigé de l'exercice 12.

1. On sait que \(f'(0) = 1\) donc \(ae^{k \times 0} + b = 1\), soit \(a + b = 1\), ou encore \(b = 1 - a\).

- De plus, \(f(6) = 0\) donc \(ae^{6k} + b = 0\), soit \(ae^{6k} = -b = a - 1\). Ainsi, \(e^{6k} = 1 - \frac{1}{a}\) et donc \(6k = \ln \left(1 - \frac{1}{a} \right)\).

Finalement, \(k = \frac{1}{6} \ln \left(1 - \frac{1}{a} \right)\).

On obtient alors :

\[f(t) = ae^{\frac{1}{6} \ln \left(1 - \frac{1}{a} \right) t} + 1 - a. \]

2. 50\% des bactéries disparaissent au bout de deux jours, donc \(f(2) = \frac{1}{2}\), soit :

\[\frac{1}{6} \ln \left(1 - \frac{1}{a} \right)^2 + 1 - a = \frac{1}{2}. \]

Ainsi,

\[\frac{1}{3} \ln \left(1 - \frac{1}{a} \right) + \frac{1}{2} - a = 0. \]

3. Si on pose \(h(x) = xe^{\frac{1}{3} \ln (1 - \frac{1}{a})}\), alors \(h\) est de la forme \(uv\) avec :

\[62 \]
\[u(x) = x \]
\[v'(x) = \frac{1}{3} \times \frac{x}{x-1} e^{\frac{1}{3} \ln(1-\frac{1}{x})} \]
\[= \frac{1}{3} x^2 \times \frac{x}{x-1} e^{\frac{1}{3} \ln(1-\frac{1}{x})} \]
\[= \frac{1}{3x} e^{\frac{1}{3} \ln(1-\frac{1}{x})} \]

\[u'(x) = 1 \ v(x) = e^{\frac{1}{3} \ln(1-\frac{1}{x})} \]

D'où :

\[h'(x) = (u'v - uv')(x) \]
\[= 1 \times e^{\frac{1}{3} \ln(1-\frac{1}{x})} + x \times \frac{1}{3} x \times \frac{1}{x-1} \]
\[= e^{\frac{1}{3} \ln(1-\frac{1}{x})} \left(1 + \frac{1}{3x-3} \right) \]

Ainsi,

\[g'(x) = h'(x) - 1 = e^{\frac{1}{3} \ln(1-\frac{1}{x})} \left(1 + \frac{1}{3x-3} \right) - 1. \]

4. a. \[\lim_{x \to +\infty} \left(1 + \frac{1}{3x-3} \right) = 1; \]

\[\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right) = 1 \text{ et } \lim_{x \to 1} \ln X = 0 \text{ donc } \lim_{x \to +\infty} \ln \left(1 - \frac{1}{x} \right) = 0. \]

De plus, \[\lim_{Y \to 0} e^Y = 1 \text{ donc } \lim_{x \to +\infty} e^{\frac{1}{3} \ln(1-\frac{1}{x})} = 1. \]

Ainsi, par produit, \[\lim_{x \to +\infty} e^{\frac{1}{3} \ln(1-\frac{1}{x})} \left(1 + \frac{1}{3x-3} \right) = 1, \text{ et donc } \]
\[\lim_{x \to +\infty} g'(x) = 0. \]

b. Si \(x > 1 \), alors \(9x(x-1) > 0 \) et donc \[\frac{-2}{9x(x-1)} < 0. \]

De plus, une exponentielle est toujours strictement positive, donc \(g''(x) < 0 \) sur \(]1; +\infty[. \]

Par conséquent, \(g' \) est strictement décroissante sur \(]1; +\infty[\) et donc, d’après la question précédente, \(g'(x) > 0 \) sur cet intervalle.

On en déduit que \(g \) est strictement croissante sur \(]1; +\infty[. \)

5. \(g(1,3) \approx -0,00261269 > 0 \) et \(g(1,4) \approx 0,022087258 < 0 \) donc 0 est une valeur intermédiaire de \(g(1,3) \) et \(g(1,4) \).

De plus, \(g \) est continue et strictement monotone sur \([1,3;1,4] \) donc d’après le corollaire du théorème des valeurs intermédiaires, l’équation \(g(x) = 0 \) admet une unique solution sur \([1,3;1,4] \).
Corrigé de l'exercice 13.

Partie A

1. h est une somme de deux fonctions dérивables sur $]0; +\infty[$, donc elle est aussi dérivable sur $]0; +\infty[$.

$$h'(x) = \frac{1}{x} + \frac{(2x-1)(2x^2) - 4x(x^2 - x + 1)}{4x^4}$$

$$= \frac{1}{x} + \frac{4x^3 - 2x^2 - 4x^3 + 4x^2 - 4x}{4x^4}$$

$$= \frac{1}{x} + \frac{2x^2 - 4x}{4x^4}$$

$$= \frac{1}{x} + \frac{x - 2}{2x^3}$$

$$h'(x) = \frac{2x^2 + x - 2}{2x^3}$$

2. Le discriminant du polynôme $P(x) = 2x^2 + x - 2$ est :

$$\Delta = 1 - 4 \times 2 \times (-2) = 17.$$

Il a donc deux racines :

$$x_1 = \frac{-1 - \sqrt{17}}{4} ; \quad x_2 = \frac{-1 + \sqrt{17}}{4}$$

$P(x)$ est du signe de « 2 » à l’extérieur des racines ; or, $x_1 < 0$.
Ainsi, $h'(x) < 0$ sur $]0; x_2[$ et $h'(x) > 0$ sur $]x_2; +\infty[$.

3. On a le tableau suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>x_2</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h'(x)$</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>$h(x)$</td>
<td></td>
<td>θ</td>
<td></td>
</tr>
</tbody>
</table>

$h(x_2) = \ln \left(\frac{\sqrt{17} - 1}{4} \right) + \frac{\left(\frac{\sqrt{17} - 1}{4} \right)^2 - \left(\frac{\sqrt{17} - 1}{4} + 1 \right)}{2 \left(\frac{\sqrt{17} - 1}{4} \right)^2} \approx 0,43 > 0.$
Ainsi, $h(x) > 0$ sur $]0; +\infty[.$

Partie B
1 f est dérivable sur $]0; +\infty[$ comme somme d’une fonction dérivable sur $]0; +\infty[$ $(x \mapsto -x)$ et d’un produit de deux fonctions dérivables sur $]0; +\infty[$ $(x \mapsto x^2 + 1$ et $x \mapsto \ln x)$.

$$\frac{f'}{2x} = 2 \ln x + \left(\frac{x^2 + 1}{x}\right) \times \frac{1}{x} - 1$$

$$= 2 \ln x + \frac{x^2 + 1}{x} - 1$$

$$= 2 \ln x \frac{x^2 - x + 1}{x}$$

Ainsi :

$$f'(x) > 0 \iff 2 \ln x \frac{x^2 - x + 1}{2x^2} > 0,$$

soit :

$$f'(x) > 0 \iff 2xh(x) > 0,$$

ou encore :

$$\forall x \in]0; +\infty[, f'(x) > 0 \iff h(x) > 0.$$

2 Dans la partie précédente, nous avons vu que sur $]0; +\infty[$, $h(x) > 0$. Ainsi, f est strictement croissante sur $]0; +\infty[$.

3 a. $f(x) = x \times x \ln x + \ln x - x$. Or, $\lim_{x \to 0} x \ln x = 0$ et $\lim_{x \to 0} \ln x = -\infty$.

Ainsi, $\lim_{x \to 0} f(x) = -\infty$.

b. $f(x) = x \left[\left(x + \frac{1}{x}\right) \ln x - 1\right].$

Or, $\lim_{x \to +\infty} \left(x + \frac{1}{x}\right) \ln x = +\infty$ et $\lim_{x \to +\infty} \ln x = +\infty$.

Ainsi, $\lim_{x \to +\infty} \left(\frac{x}{x} + \frac{1}{x}\right) \ln x - 1 = +\infty$.

On a donc : $\lim_{x \to +\infty} f(x) = +\infty$.

c. On a le tableau suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>$-\infty$</td>
<td>$+\infty$</td>
</tr>
</tbody>
</table>
4 a. f est dérivable et strictement croissante sur $]0; +\infty[.$
 De plus, $\lim_{x \to 0} f(x) < 0$ et $\lim_{x \to +\infty} f(x) > 0.$
 Ainsi, d’après le théorème de la bijection, il existe une unique valeur α sur $]0; +\infty[$ telle que $f(\alpha) = 0.$

 b. $f(1) = 2\ln 1 - 1 = -1 < 0$ et $f(2) = 5\ln 2 - 2 > 0$ donc $1 < \alpha < 2.$

 c. À l’aide de la calculatrice, on a $\alpha \approx 1,6.$

Corrigé de l’exercice 14.

1 a. $g'(x) = e^x (1 + x)$ donc $g'(x) > 0$ sur $]0; +\infty[.$
 Ainsi, f est strictement croissante sur $]0; +\infty[.$

 b. g est continue et strictement monotone (croissante ici) sur $]0; +\infty[.$
 De plus, $g(0) = -1$ et $g(1) = e - 1 > 0.$ Donc, d’après le corollaire du théorème des valeurs intermédiaires, il existe une unique valeur α sur $]0; +\infty[$ telle que $g(\alpha) = 0,$ soit $ae^\alpha = 1.$ On trouve $\alpha \approx 0,567.$

 c. g est croissante et $g(\alpha) = 0$ donc $g(x) < 0$ sur $]0; \alpha[$ et $g(x) > 0$ sur $]\alpha; +\infty[.$

2 a. $\lim_{x \to 0} \ln x = -\infty$ et $\lim_{x \to 0} e^x = 1$ donc, par somme, $\lim_{x \to 0} f(x) = +\infty.$

 On peut écrire :
 $$f(x) = e^x \left(1 - \frac{\ln x}{x} \times \frac{x}{e^x}\right)$$

 De plus, $\lim_{x \to +\infty} \ln x = 0$ et $\lim_{x \to +\infty} e^x = +\infty,$ soit $\lim_{x \to +\infty} \frac{x}{e^x} = 0.$
 Par produit, on a $\lim_{x \to +\infty} f(x) = +\infty.$

 b. $f'(x) = e^x - \frac{1}{x} = \frac{xe^x}{x} - \frac{1}{x} = \frac{g(x)}{x}.$ Ainsi, d’après la question 1, on a :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>α</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td>$-\infty$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$+\infty$</td>
<td>$f(\alpha)$</td>
<td>$+\infty$</td>
</tr>
</tbody>
</table>

 c. $f(\alpha) = e^\alpha - \ln \alpha$
 $= \frac{1}{\alpha} - \ln \frac{1}{e^\alpha}$ d’après la question 1.b.
 $= \frac{1}{\alpha} - \ln 1 + \ln e^\alpha$

 $m = \frac{1}{\alpha} + \alpha$

 De plus, avec $\alpha \approx 0,567,$ on a $m \approx 2,33.$ D’où le résultat demandé.

3 Une équation de la tangente est :
 $$y = f'(a)(x - a) + f(a),$$ $a = 0.$
Ainsi,
\[
y = f'(1)(x - 1) + f(1) \\
= (e - 1)(x - 1) + e - \ln 1 \\
= (e - 1)x - e + 1 + e \\
y = (e - 1)x + 1
\]

Notons A(x; 0) le point d’intersection de T avec l’axe des abscisses. Alors,
\[
(e - 1)x + 1 = 0 \Leftrightarrow x = \frac{1}{1-e}
\]

Corrigé de l’exercice 15.

Partie A

1. \[
\lim_{x \to 0} (1 - xe) = 1 \\
\lim_{x \to 0} (-2 \ln x) = +\infty
\]
par somme, \[
\lim_{x \to 0} g(x) = +\infty
\]

\[
\lim_{x \to +\infty} (1 - xe) = -\infty \\
\lim_{x \to +\infty} (-2 \ln x) = -\infty
\]
par somme, \[
\lim_{x \to +\infty} g(x) = -\infty
\]

2. \[g(x) = u(x) + v(x),\] où \[u(x) = 1 - xe\] et \[v(x) = -2 \ln x.\] u et v étant deux fonctions strictement décroissantes sur \([0; +\infty[\), g est strictement décroissante sur \([0; +\infty[\) (comme somme de deux fonctions strictement décroissantes sur le même intervalle).

3. Sur \([\frac{1}{2}; 1]\),
 - g est continue et strictement monotone (décroissante ici) ;
 - \[g \left(\frac{1}{2} \right) = 1 - \frac{e}{2} + 2 \ln 2 \approx 1,03 > 0\] et \[g(1) = 1 - e < 0\]

Ainsi, d’après le corollaire du théorème des valeurs intermédiaires, il existe une unique valeur \(\alpha\) dans \([\frac{1}{2}; 1]\) telle que \(g(\alpha) = 0\).

À l’aide de la calculatrice, on trouve : \(\alpha \approx 0,67\).
On déduit de ce qui a été dit précédemment le tableau suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>α</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(x)$</td>
<td>$+$</td>
<td>\emptyset</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Partie B

1.
\[
\lim_{x \to 0} (\ln x + xe) = -\infty \quad \lim_{x \to 0} x^2 = 0^+ \quad \text{donc, par quotient,} \quad \lim_{x \to 0} f(x) = -\infty
\]

\[
f(x) = \frac{x (\ln x + e)}{x^2} = \frac{\ln x}{x} + e.
\]

\[
\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \quad \text{donc} \quad \lim_{x \to +\infty} \left(\frac{\ln x}{x} + e \right) = e \quad \text{donc, par quotient,} \quad \lim_{x \to +\infty} f(x) = 0
\]

2.
\[
f'(x) = \frac{x^2 \left(\frac{1}{x} + e \right) - 2x(\ln x + xe)}{x^4}
\]

\[
= \frac{x + x^2e - 2x \ln x - 2x^2e}{x^4}
\]

\[
= \frac{x - x^2e - 2x \ln x}{x^4}
\]

\[
= \frac{x(1 - xe - 2 \ln x)}{x^4}
\]

\[
= \frac{1 - xe - 2 \ln x}{x^3}
\]

On déduit alors de la partie A le tableau suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>α</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td>$+$</td>
<td>\emptyset</td>
<td>$-$</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>$-\infty$</td>
<td>$\rightarrow f(\alpha)$</td>
<td>$\rightarrow 0$</td>
</tr>
</tbody>
</table>

3. α est la valeur pour laquelle $g(\alpha) = 0$.

\[
g(\alpha) = 0 \iff 1 - \alpha e - 2 \ln \alpha = 0
\]

\[
\iff -2 \ln \alpha = -1 + \alpha e
\]

\[
\iff \ln \alpha = \frac{1 - \alpha e}{2} \quad \text{(E)}
\]
Ainsi,

\[f(\alpha) = \frac{\ln \alpha + \alpha e}{\alpha^2} = \frac{1 - \alpha e + \alpha e}{\alpha^2} = \frac{1}{\alpha^2} \times \frac{1 - 2\alpha e + 2\alpha e}{2} \]

\[f(\alpha) = \frac{1 + \alpha e}{2\alpha^2} \]

Corrigé de l’exercice 16.

Partie A

1. \(P \) est dérivable sur \(\mathbb{R} \) car c’est un polynôme. Sa dérivée est :

\[P'(x) = 3x^2 + 2x + 1. \]

Le discriminant de \(P'(x) \) est :

\[\Delta = 2^2 - 4 \times 3 \times 1 = 4 - 24 = -20 < 0. \]

Donc \(P'(x) > 0 \) sur \(\mathbb{R} \), ce qui signifie que \(P \) est strictement croissant sur \(\mathbb{R} \).

2. \(P \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right)^3 + \left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right) - 1 = -\frac{1}{8} < 0. \)

De plus, \(P(1) = 2 > 0. \)

Or, \(P \) est dérivable et strictement croissant sur \(\left[\frac{1}{2} ; 1 \right[\) donc, d’après le théorème de la bijection, l’équation \(P(x) = 0 \) admet une unique solution sur \(\left[\frac{1}{2} ; 1 \right[\).

3. D’après les questions précédentes, on peut alors dire :

- \(P(X) < 0 \) sur \(]-\infty ; \alpha [. \)
- \(P(X) > 0 \) sur \(]\alpha ; +\infty [. \)

Partie B

1. \(f \) est dérivable sur \(]0 ; +\infty[\) comme quotient de deux fonctions dérivasbles sur cet intervalle. Sa dérivée est :

\[f'(x) = \frac{2 \times \frac{1}{x} \times \left[x (\ln x)^2 + 1 \right] - 2 \ln x \left[(\ln x)^2 + 1 + x \left(\frac{2 \ln x}{x} \right) \right]}{x^2 ((\ln x)^2 + 1)^2} = \frac{2(\ln x)^2 + 2 - 2(\ln x)^3 - 2 \ln x - 4(\ln x)^2}{x^2 ((\ln x)^2 + 1)^2} \]

\[f'(x) = -2 \frac{(\ln x)^3 + (\ln x)^2 + \ln x - 1}{x^2 ((\ln x)^2 + 1)^2} \]
2 D’après la question précédente, nous pouvons dire que

\[f'(x) = -2 \frac{P(\ln x)}{x^2((\ln x)^2 + 1)^2}, \]

où \(P \) est le polynôme défini dans la partie A. Donc \(f'(x) \) est du signe contraire de \(P(\ln x) \).

Or, nous avons dit que \(P(x) > 0 \) pour \(x > \alpha \). Ainsi, \(P(\ln x) > 0 \) pour \(\ln x > \alpha \), soit \(x > e^\alpha \).

Ainsi, \(f'(x) < 0 \) pour \(x > e^\alpha \).

3 \(f(x) = \frac{2\ln x}{x((\ln x)^2 + 1)} = \frac{2}{x \ln x + \frac{x}{\ln x}} \) pour \(x \neq 1 \).

Or, \(\lim_{x \to +\infty} x \ln x = +\infty \) et \(\lim_{x \to +\infty} \frac{x}{\ln x} = +\infty \).

Ainsi, \(\lim_{x \to +\infty} f(x) = 0 \).

De plus, \(\lim_{x \to 0} x \ln x = 0^- \) et \(\lim_{x \to 0} \frac{x}{\ln x} = 0^- \).

Ainsi, \(\lim_{x \to 0} f(x) = -\infty \).

4 Nous avons le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(\alpha)</th>
<th>+(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(f(x))</td>
<td>(-\infty)</td>
<td>(f(\alpha))</td>
<td>(0)</td>
</tr>
</tbody>
</table>

5 On remarque que \(f(x) = \frac{u'(x)}{u(x)} \), avec \(u(x) = (\ln x)^2 + 1 > 0 \) et donc \(u'(x) = \frac{2\ln x}{x} \).

Ainsi, une primitive de \(f \) sur \(]0; +\infty[\) est \(F(x) = \ln ((\ln x)^2 + 1) \). Ainsi :

\[I(t) = \int_1^t f(x) \, dx = F(t) - F(1) = \ln ((\ln t)^2 + 1) \]

6 \(I(t) = 1 \iff \ln ((\ln t)^2 + 1) = 1 \iff (\ln t)^1 + 1 = e \iff (\ln t)^2 = e - 1. \)

On a alors \(\ln t = \sqrt{e - 1} \) ou \(\ln t = -\sqrt{e - 1} \), soit \(t = e^{\sqrt{e - 1}} \) ou \(t = e^{-\sqrt{e - 1}} \). Or, par hypothèse, \(t \geq 1 \) donc \(t \neq e^{-\sqrt{e - 1}} \).

Ainsi, \(t = e^{\sqrt{e - 1}} \approx 3,7 \).

■ Corrigé de l’exercice 17.

1 a. \(h'(x) = 2x(1 - 2\ln x) + x^2 \times \left(-2 \times \frac{1}{x}\right) = 2x - 4x \ln x - 2x \)

\[h'(x) = -4x \ln x \]

\(h'(x) > 0 \iff -4x \ln x > 0 \)

\(\iff \ln x < 0 \) car \(x > 0 \)

\(\iff 0 < x < e \)
De plus,

- \(\lim_{x \to 0} h(x) = \lim_{x \to 0} \left(x^2 - 2x^2 \ln x + 1\right) = 1 \) car \(\lim_{x \to 0} x^2 \ln x = 0 \).
- \(h(1) = 1^2(1 - 2 \ln 1) + 1 = 1 + 1 = 2 \).
- \(\lim_{x \to +\infty} (1 - 2 \ln x) = -\infty \) et \(\lim_{x \to +\infty} x^2 = +\infty \) donc par produit, \(\lim_{x \to +\infty} h(x) = -\infty \).

D'où le tableau suivant :

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th></th>
<th>+\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h′</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

b. \(h \) est continue et strictement décroissante sur \([1 ; +\infty[\).

De plus, \(h(1) = 2 \) et \(\lim_{x \to +\infty} h(x) = -\infty \), donc d'après le corollaire du théorème des valeurs intermédiaires, il existe une unique valeur \(\alpha > 1 \) telle que \(h(\alpha) = 0 \). À la calculatrice, on trouve :

\(\alpha \approx 1,895 \)

c. De ce qui précède, on déduit le tableau suivant :

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>+\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

2 a. \(g'(x) = -2x \ln x + (1 - x^2) \times \frac{1}{x} + 2x \)

\(= -2x^2 \ln x + 1 - x^2 + 2x \)

\(= \frac{-2x^2 \ln x + x^2 + 1}{x} \)

\(= \frac{(1 - 2 \ln x)x^2 + 1}{x} \)

\(g'(x) = \frac{h(x)}{x} \)

Ainsi, \(g'(x) \) est du signe de \(h(x) \) (car \(x > 0 \)).

De plus,

- \(\lim_{x \to 0} (1 - x^2) = 1 \) et \(\lim_{x \to 0} \ln x = -\infty \) donc \(\lim_{x \to 0} (1 - x^2) \ln x = -\infty \).
 - De plus, \(\lim_{x \to 0} (x^2 + 1) = 1 \) donc par somme, \(\lim_{x \to 0} g(x) = -\infty \).
- \(g(\alpha) \approx 2,9 > 0 \)
- \(g(x) = x^2 \left[\frac{1}{x^2} - 1\right] \ln x + 1 + \frac{1}{x^2} \)

\(\lim_{x \to +\infty} \left(\frac{1}{x^2} - 1\right) = -1 \) et \(\lim_{x \to +\infty} \ln x = +\infty \) donc par produit,

\(\lim_{x \to +\infty} \left(\frac{1}{x^2} - 1\right) \ln x = -\infty \).

De plus, \(\lim_{x \to +\infty} \left(1 + \frac{1}{x^2}\right) = 1 \) donc par somme,

\(\lim_{x \to +\infty} \left[\left(\frac{1}{x^2} - 1\right) \ln x + 1 + \frac{1}{x^2}\right] = -\infty \).

Ainsi, par produit, \(\lim_{x \to +\infty} g(x) = -\infty \).
D'où le tableau suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>α</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g'(x)$</td>
<td>+</td>
<td>0</td>
<td>−</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>$-\infty$</td>
<td>$g(\alpha) > 0$</td>
<td>$-\infty$</td>
</tr>
</tbody>
</table>

b. Sur $]0 ; \alpha[$, g est continue et strictement décroissante. De plus, $\lim_{x \to 0} g(x) = -\infty$ et $g(\alpha) > 0$ donc d’après le corollaire du théorème des valeurs intermédiaires, il existe une unique solution β sur $]0 ; \alpha[$ à l’équation $g(x) = 0$. Il en est de même sur $]\alpha ; +\infty[$. La solution est alors notée γ.

\[\beta \approx 0,301 \quad \text{et} \quad \gamma \approx 3,319 \]

Nous savons donc que :

\[g(\beta) = 0 \quad \text{donc} \quad (1 - \beta^2) \ln \beta + \beta^2 + 1 = 0. \]

Ainsi,

\[g\left(\frac{1}{\beta}\right) = \left(1 - \frac{1}{\beta^2}\right) \ln \frac{1}{\beta} + \frac{1}{\beta^2} + 1 = \frac{\beta^2 - 1}{\beta} \times (-\ln \beta) + \frac{\beta^2 + 1}{\beta^2} = \frac{(1 - \beta^2) \ln \beta + \beta^2 + 1}{\beta^2} = \frac{g(\beta)}{\beta^2} = 0. \]

Ainsi, $\frac{1}{\beta}$ est solution de l’équation $g(x) = 0$. Or, cette équation n’admet que deux solutions : β et γ. De plus, $\beta \neq \frac{1}{\beta}$ donc $\gamma = \frac{1}{\beta}$.

\[f'(x) = \frac{(\ln x + 1)(x^2 + 1) - 2x^2 \ln x}{(x^2 + 1)^2} = \frac{\ln x - x^2 \ln x + x^2 + 1}{(x^2 + 1)^2} = \frac{(1 - x^2) \ln x + x^2 + 1}{(x^2 + 1)^2} = \frac{g(x)}{(x^2 + 1)^2} \]

Ainsi, $f'(x)$ est du signe de $g(x)$ d’où :

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>β</th>
<th>$\frac{1}{\beta}$</th>
<th>$+\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'(x)$</td>
<td>−</td>
<td>0</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$f(x)$</td>
<td>0</td>
<td>$f(\beta)$</td>
<td>$f\left(\frac{1}{\beta}\right)$</td>
<td>0</td>
</tr>
</tbody>
</table>
4 \quad f(\gamma) = f \left(\frac{1}{\beta} \right)
\begin{align*}
&= \frac{1}{\beta} \ln \frac{1}{\beta} \\
&= \frac{1}{\beta} \ln \frac{1}{\beta} + 1 \\
&= \frac{-\ln \beta}{1 + \beta^2} \\
&= - \frac{\ln \beta}{\beta} \times \frac{\beta^2}{1 + \beta^2} \\
&= - \frac{\beta \ln \beta}{\beta^2 + 1} \\
&= - f(\beta).
\end{align*}
Suites

A Exercices d’application du cours
R Exercices de réflexion
★ Exercice & corrigé relus avec attention pour éviter les erreurs

22 février 2017

■ Exercice 1. Suite définie par \(u_{n+1} = u_n + 2n + 3 \)
(Source : ts-suites-01)
On considère la suite \((u_n)\) définie par :
\[
\begin{cases}
 u_0 = 1 \\
 u_{n+1} = u_n + 2n + 3 , \quad \forall n \in \mathbb{N}
\end{cases}
\]
1 Étudier la monotonie de \((u_n)\).
2a. Démontrer par récurrence que pour tout entier naturel \(n\), \(u_n \geq n^2\).

2b. Déterminer alors la limite de \((u_n)\).
3 Conjecturer une expression de \(u_n\) en fonction de \(n\) puis démontrer la propriété conjecturée.

■ Exercice 2. Suite définie par \(u_{n+1} = \frac{1}{2-u_n} \)
(Source : ts-suites-02)
On considère la suite \((u_n)\) définie par :
\[
\begin{cases}
 u_0 = 0 \\
 u_{n+1} = \frac{1}{2-u_n} , \quad \forall n \in \mathbb{N}
\end{cases}
\]
1 Calculer \(u_1, u_2\) et \(u_3\) sous forme de fraction irréductible.
2 Conjecturer la formule qui donne \(u_n\) puis la montrer par récurrence.

■ Exercice 3. Suite définie par \(u_{n+1} = f(u_n) \) avec \(f(x) = \frac{2x+1}{x+1} \)
(Source : ts-suites-03)
Soit la fonction \(f\) définie sur \([0;2]\) par :
\[
f(x) = \frac{2x+1}{x+1}.
\]
1 Déterminer les variations de \(f\) sur \([0;2]\).
Montrer alors l’implication suivante :
\[
x \in [1;2] \Rightarrow f(x) \in [1;2].
\]
2 On considère la suite \((u_n)\) définie par :
\[
\begin{cases}
 u_0 = 1 \\
 u_{n+1} = f(u_n), \quad \forall n \in \mathbb{N}
\end{cases}
\]

Montrer que pour tout entier naturel \(n\), \(u_n \in [1; 2]\) et que \(u_n \leq u_{n+1}\).

3 En déduire que la suite \((u_n)\) converge. Calculer alors sa limite.

Exercice 4. Suite définie par \(u_{n+1} = f(u_n)\) avec \(f(x) = \frac{x+6}{x+2}\)
(Source : ts-suites-04)

Soit la suite \((u_n)\) définie par :
\[
\begin{cases}
 u_0 = 1 \\
 u_{n+1} = \frac{u_n + 6}{u_n + 2}, \quad \forall n \in \mathbb{N}
\end{cases}
\]

1 Montrer que si \((u_n)\) converge vers un nombre \(\ell\), alors \(\ell\) est racine du polynôme :
\[
P(x) = x^2 + x - 6.
\]

2 Déterminer les racines de \(P\). On les notera \(\alpha\) et \(\beta\), avec \(\alpha > \beta\).

Pour tout entier naturel \(n\), on pose \(v_n = \frac{u_n - \alpha}{u_n - \beta}\).

3 Montrer que la suite \((v_n)\) est géométrique. On précisera alors son premier terme et sa raison.

4 En déduire la limite de la suite \((u_n)\).

Exercice 5. Suite définie par \(u_{n+1} = f(u_n)\) avec \(f(x) = \frac{4x-1}{4x}\)
(Source : ts-suites-05)

On considère la suite \((u_n)\) définie par :
\[
\begin{cases}
 u_0 = 3 \\
 u_{n+1} = \frac{4u_n - 1}{4u_n}, \quad \forall n \in \mathbb{N}
\end{cases}
\]
et la suite \((v_n)\) définie pour tout entier naturel \(n\) par :
\[
v_n = \frac{1}{u_n - \frac{1}{2}}.
\]

1 Montrer que \((v_n)\) est une suite arithmétique dont on précisera le premier terme et la raison.

2 En déduire \(\lim_{n \to +\infty} u_n\).
Exercice 6. Suite définie par $u_{n+1} = \frac{1}{2} u_n + 2n - 1$

(Source : ts-suites-06)

On définit la suite (u_n) pour tout entier naturel n par :

$$
\begin{cases}
 u_0 = 1 \\
 u_{n+1} = \frac{1}{2} u_n + 2n - 1
\end{cases}
$$

1. Calculer les 10 premiers termes de cette suite à l’aide de la calculatrice ou d’un tableur. Que peut-on conjecturer quant à la nature de (u_n) ?

2. On pose $v_n = u_n - 4n + 10$.

 a. Montrer que (v_n) est une suite géométrique que l’on caractérisera.

 b. En déduire l’expression de v_n puis celle de u_n en fonction de n.

 c. On pose :

 $$
 S_n = \sum_{k=0}^{n} u_k = u_0 + u_1 + \cdots + u_n.
 $$

 Donner l’expression de S_n en fonction de n.

Exercice 7. Démonstration par récurrence : $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

(Source : ts-suites-07)

On considère la somme :

$$
S_n = \sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \cdots + (n-1)^2 + n^2.
$$

Montrer par récurrence que :

$$
S_n = \frac{n(n+1)(2n+1)}{6}.
$$

Exercice 8. Étude générale des suites de la forme $u_{n+1} = \lambda u_n + P(n)$

(Source : ts-suites-08)

On considère la suite (u_n) définie par :

$$
\begin{cases}
 u_0 \in \mathbb{R} \\
 u_{n+1} = \lambda u_n + P(n) , \quad \forall n \in \mathbb{N}
\end{cases}
$$

où P est un polynôme et où $\lambda \in \mathbb{R}^* \setminus \{1\}$.

On pose alors la suite (v_n) définie par :

$$
v_n = u_n + Q(n),
$$

où Q est un polynôme.

1. Montrer l’équivalence suivante :

 (v_n) est une suite géométrique $\iff \forall n \in \mathbb{N},\ P(n) = \lambda Q(n) - Q(n + 1)$.

On suppose maintenant que $P(n) = an + b$, a et b étant deux réels non nuls.
Trouver, en fonction de λ, a et b, l’expression du polynôme Q.

En déduire, en fonction de λ, u_0, a, b et n, une expression de v_n, puis de u_n.

Application : déterminer l’expression du terme général de la suite (u_n) définie par son premier terme $u_0 = 5$ et par la relation $u_{n+1} = 2u_n - 3n + 7$.
Vérifier la formule trouvée pour les premiers termes de (u_n).

Exercice 9. Suite définie par $u_{n+1} = \frac{1}{2}u_n - \frac{2}{3}$

(Source : ts-suites-09)

On considère la suite (u_n) définie par :

$$
\begin{cases}
 u_0 = 1 \\
 u_{n+1} = \frac{1}{2}u_n - \frac{2}{3}, \quad \forall n \in \mathbb{N}
\end{cases}
$$

1. Déterminer le réel λ tel que la suite géométrique (v_n) définie par :
 $$
 \forall n \in \mathbb{N}, v_n = u_n + \lambda, \quad \lambda \in \mathbb{R}
 $$
 soit géométrique.

2. Calculer alors $\lim_{n \to +\infty} u_n$.

Exercice 10. Calcul de la limite de $\frac{n + \cos(n)}{n^2}$

(Source : ts-suites-10)

Déterminer la limite de la suite $(u_n)_{n \geq 1}$ où $u_n = \frac{n + \cos(n)}{n^2}$.

Exercice 11. Suites imbriquées

(Source : ts-suites-11)

Soient deux suites (u_n) et (v_n) telles que :

$$
\begin{align*}
 u_0 &= v_0 = \frac{1}{2} \\
 \forall n \in \mathbb{N}, \quad \begin{cases}
 u_{n+1} &= 0,6u_n + 0,3v_n \\
 v_{n+1} &= 0,4u_n + 0,7v_n
 \end{cases}
\end{align*}
$$

On pose alors pour tout entier naturel n :

$$
\begin{cases}
 a_n = u_n + v_n \\
 b_n = 4u_n - 3v_n
\end{cases}
$$

1. Montrer que (a_n) est constante.

2. Montrer que (b_n) est une suite géométrique dont on donnera le premier terme et la raison.

3. En déduire l’expression de u_n en fonction de n, puis celle de v_n en fonction de n.

4. Démontrer que (u_n) converge et donner sa limite.
Exercice 12. Des suites dans les probabilités

Dans un zoo, l’unique activité d’un manchot est l’utilisation d’un bassin aquatique équipé d’un toboggan et d’un plongeoir. On a observé que si un manchot choisit le toboggan, la probabilité qu’il le reprenne est 0,3. Si un manchot choisit le plongeoir, la probabilité qu’il le reprenne est 0,8. Lors du premier passage les deux équipements ont la même probabilité d’être choisis.

Pour tout entier naturel n non nul, on considère l’événement :

- \(T_n \) : « le manchot utilise le toboggan lors de son n-ième passage. »
- \(P_n \) : « le manchot utilise le plongeoir lors de son n-ième passage. »

On considère alors la suite \((u_n)_{n \geq 1}\) définie par :

\[
 u_n = p(T_n)
\]

où \(p(T_n) \) est la probabilité de l’événement \(T_n \).

1. a. Donner les valeurs des probabilités \(p(T_1), p(P_1) \) et des probabilités conditionnelles \(p_{T_1}(T_2), p_{P_1}(T_2) \).
 b. Montrer que \(p(T_2) = \frac{1}{4} \).
 c. Recopier et compléter l’arbre suivant :

 ![Arbre de probabilités]

 d. Démontrer que pour tout entier \(n \geq 1, u_{n+1} = 0,1u_n + 0,2 \).
 e. À l’aide de la calculatrice, émettre une conjecture concernant la limite de la suite \((u_n)\).

2. On considère la suite \((v_n)\) définie pour tout entier naturel \(n \geq 1 \) par :

\[
 v_n = u_n - \frac{2}{9}.
\]

 a. Démontrer que la suite \((v_n)\) est géométrique de raison \(\frac{1}{10} \). Préciser son premier terme.
 b. Exprimer \(v_n \) en fonction de \(n \). En déduire l’expression de \(u_n \) en fonction de \(n \).
c. Calculer la limite de la suite \((u_n)\). Ce résultat permet-il de valider la conjecture émise en 1. e. ?

Exercice 13. Étude d’une fonction \(\ln\) et suite extraite
(Source : ts-suites-13)

Partie A

On considère la fonction \(f\) définie sur \(\mathbb{R}^*_+\) par :

\[
f(x) = \ln \left(1 + \frac{1}{x}\right).
\]

1. Déterminer les limites de \(f(x)\) aux bornes de son domaine de définition.
2. Calculer \(f'(x)\) puis déterminer le sens de variation de \(f\) sur \(\mathbb{R}^*_+\).
3. Dresser un tableau de variations complet de la fonction \(f\).

Partie B

On considère la fonction \(g\) définie sur \(\mathbb{R}^*_+\) par :

\[
g(x) = f(x) - x.
\]

1. Montrer que \(g\) est strictement décroissante sur \(\mathbb{R}^*_+\).
2. Montrer que l’équation \(g(x) = 0\) admet une unique solution \(\alpha\) sur \(\left[\frac{1}{2} ; 1\right]\).

En déduire que l’équation \(\alpha\) est l’unique solution de l’équation \(f(x) = x\) sur \(\mathbb{R}^*_+\).

Partie C

On considère la suite \((u_n)\) définie par :

\[
\begin{cases}
u_0 = 1 \\
u_{n+1} = f(u_n), & \forall n \in \mathbb{N}
\end{cases}
\]

On définit alors la suite \((v_n)\) par :

\[
\forall n \in \mathbb{N}, \quad v_n = u_{2n}.
\]

1. Calculer \(v_0, v_1\) puis \(v_2\). On donnera des valeurs approchées au millième.
2. Montrer que pour tout entier naturel \(n\), \(v_{n+1} = f(f(u_{2n}))\).
3. Montrer par récurrence que pour tout entier naturel \(n\),

\[
\frac{1}{2} \leq v_{n+1} \leq v_n \leq 1.
\]

4. En déduire que \((v_n)\) converge.

5. En déduire que \((u_n)\) et \((v_n)\) ont la même limite \(\alpha\), où \(\alpha\) est la valeur introduite dans la partie B.
Partie D

On considère l’algorithme suivant :

<table>
<thead>
<tr>
<th>Entrées</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a nombre réel</td>
</tr>
<tr>
<td>2 n nombre entier</td>
</tr>
<tr>
<td>3 d nombre réel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traitement</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a prend la valeur 1</td>
</tr>
<tr>
<td>5 n prend la valeur 0</td>
</tr>
<tr>
<td>6 d prend la valeur 1</td>
</tr>
<tr>
<td>7 Tant que d > 10^{-6}</td>
</tr>
<tr>
<td>8 d prend la valeur a</td>
</tr>
<tr>
<td>9 a prend la valeur ln(1+1/a)</td>
</tr>
<tr>
<td>10 a prend la valeur ln(1+1/a)</td>
</tr>
<tr>
<td>11 n prend la valeur n+1</td>
</tr>
<tr>
<td>12 d prend la valeur d-a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sortie</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Afficher a</td>
</tr>
</tbody>
</table>

1 Un élève affirme qu’il y a une erreur car les lignes 9 et 10 sont identiques. Expliquer en quoi cet élève se trompe.

2 Que doit-on écrire pour ne pas répéter ces deux lignes ?

3 Implanter cet algorithme sur votre calculatrice puis donner une valeur approchée de α à 10^{-6} près.

Exercice 14. Étude générale des suites imbriquées

Dans cet exercice, par soucis de simplification des raisonnements, on admettra que toutes les fractions sont définies.

On considère deux suites (u_n) et (v_n) définies par leurs premiers termes u_0 et v_0 et par les relations de récurrences suivantes :

\[
\forall n \in \mathbb{N}, \quad \begin{cases}
 u_{n+1} = \alpha u_n + \beta v_n \\
 v_{n+1} = \lambda u_n + \mu v_n
\end{cases}, \quad \alpha, \beta, \lambda, \mu \text{ étant 4 réels non nuls.}
\]

On pose alors :

\[
\forall n \in \mathbb{N}, \quad \begin{cases}
 a_n = p_1 u_n + q_1 v_n \\
 b_n = p_2 u_n + q_2 v_n
\end{cases}.
\]

1 Montrer l’équivalence suivante :

\[
(a_n) \text{ est constante } \iff \begin{cases}
 p_1 = \frac{\mu - \lambda}{\alpha \mu - \beta \lambda} \\
 q_1 = \frac{\alpha - \beta}{\alpha \mu - \beta \lambda}
\end{cases}.
\]
2 a. Montrer l’équivalence suivante :

\[(b_n) \text{ est géométrique } \iff p_2 = \frac{\alpha p_2 + \lambda q_2}{\beta p_2 + \mu q_2}.\]

b. En déduire que (b_n) est géométrique équivaut à :

\[
\left(p_2 + \frac{\mu - \alpha}{2\beta}q_2\right)^2 = \frac{(\mu - \alpha)^2 + 4\beta \lambda}{4\beta^2}q_2^2.
\]

On suppose que \((\mu - \alpha)^2 + 4\beta \lambda \geq 0\).

c. En déduire que :

\[
p_2 = \sqrt{\frac{(\mu - \alpha)^2 + 4\beta \lambda + \alpha - \mu}{2\beta}q_2^2} \quad \text{ou} \quad p_2 = -\sqrt{\frac{(\mu - \alpha)^2 + 4\beta \lambda + \alpha - \mu}{2\beta}q_2^2}.
\]

d. Montrer que si \(p_2 = q_2\), alors \(\beta + \mu = \alpha + \lambda\).

3 En prenant \(\alpha = 0, 6, \beta = 0, 3, \lambda = 0, 4\) et \(\mu = 0, 7\), déterminer la valeur de \(p_1, q_1\) et \(p_2\) sachant que l’on pose \(q_2 = -3\).

Exercice 15. Suite définie par \(u_{n+1} = ku_n(1 - u_n)\)

(Source : ts-suites-15)

On sait tous qu’il y a des années à coccinelles et d’autres sans !
On se propose d’étudier l’évolution d’une population de coccinelles à l’aide d’un modèle utilisant la fonction numérique \(f\) définie par :

\[f(x) = kx(1 - x),\]

\(k\) étant un paramètre réel qui dépend de l’environnement.
Dans le modèle choisi, on admet que le nombre des coccinelles reste inférieur à un million.
L’effectif des coccinelles, exprimé en millions d’individus, est approché pour l’année \(n\) par un nombre réel \(u_n\) avec \(u_n\) compris entre 0 et 1. Par exemple, si pour l’année zéro il y a 300 000 coccinelles, on prendra \(u_0 = 0, 3\).
On admet que l’évolution d’une année sur l’autre obéit à la relation \(u_{n+1} = f(u_n)\), \(f\) étant la fonction définie ci-dessus.
Le but de l’exercice est d’étudier le comportement de la suite \((u_n)\) pour différentes valeurs de la population initiale \(u_0\) et du paramètre \(k\).

1 Justifier que si la suite \((u_n)\) définie précédemment converge vers \(\alpha\), alors \(\alpha\) vérifie la relation \(f(\alpha) = \alpha\).

2 Supposons \(u_0 = 0, 4\) et \(k = 1\).

 a. Étudier le sens de variation de la suite \((u_n)\).
 b. Montrer par récurrence que, pour tout entier \(n\), \(0 \leq u_n \leq 1\).
 c. La suite \((u_n)\) est-elle convergente ? Si oui, quelle est sa limite ?
 d. Que peut-on dire de l’évolution à long terme de la population de coccinelles avec ces hypothèses ?

81
Supposons maintenant \(u_0 = 0,3 \) et \(k = 1,8. \)

a. Étudier les variations de la fonction \(f \) sur \([0;1]\) et montrer que \(f \left(\frac{1}{2} \right) \in \left[0;\frac{1}{2} \right]. \)

b. En utilisant éventuellement un raisonnement par récurrence,
 - montrer que, pour tout entier naturel \(n, \) \(0 \leq u_n \leq \frac{1}{2} ; \)
 - établir que, pour tout entier naturel \(n, \) \(u_{n+1} \geq u_n. \)

c. La suite \((u_n)\) est-elle convergente? Si oui, quelle est sa limite?

d. Que peut-on dire de l’évolution à long terme de la population de coccinelles avec ces hypothèses?

Exercice 16. Suite \((\alpha_n)\) de solution d’équations

(Source : ts-suites-16)

1. Déterminer la limite en \(+\infty\) de la fonction \(\varphi : x \mapsto \frac{\ln (x^2 + 1)}{x}. \)

2. Soit \(n \) un entier naturel non nul, \(n \) étant fixé pour cette question. On définit la fonction \(f_n \) sur \([0; +\infty[\) par :
 \[f_n(x) = 2x - 2 + \frac{\ln (x^2 + 1)}{n}. \]

 a. Déterminer la limite de \(f_n \) en \(+\infty\).

 b. Calculer la dérivée de \(f_n \) sur \([0; +\infty[\).

 c. Dresser le tableau de variations de \(f_n. \)

 d. En déduire que l’équation, d’inconnue \(x, \) \(f_n(x) = 0 \) admet une unique solution \(\alpha_n \) dans \([0; +\infty[.\)

 e. Justifier que \(0 < \alpha_n < 1. \)

3. Prouver que pour tout entier naturel \(n \) non nul, \(\ln (\alpha_n^2 + 1) = 2n(1 - \alpha_n). \)

 En déduire que \(f_{n+1}(\alpha_n) < 0. \)

4. Étude de la suite \((\alpha_n)_{n \in \mathbb{N}^*}. \)

 a. À l’aide de la calculatrice, proposer sans justification, des valeurs décimales approchées à \(10^{-2}\) près de \(\alpha_1, \alpha_4 \) et \(\alpha_{10}. \)

 b. Démontrer que la suite \((\alpha_n)\) est croissante.

 c. En déduire que la suite \((\alpha_n)\) est convergente.

 d. Déterminer la limite de la suite \((\alpha_n).\)

Exercice 17. La puce (probabilités et suites)

(Source : ts-suites-17)

On étudie le mouvement aléatoire d’une puce. Cette puce se déplace sur trois cases notées A, B et C. Soit \(n \) un entier naturel. À l’instant initial \(n = 0, \) la puce se trouve en A.

- Si à l’instant \(n \) la puce est en A, alors à l’instant \(n+1, \) elle est soit en B avec une probabilité égale à \(\frac{1}{2}, \) soit en C avec une probabilité égale à \(\frac{2}{3}.\)
Si à l’instant n la puce est en B, alors à l’instant $(n + 1)$, elle est soit en A, soit en C de façon équiprobable.

Si à l’instant n la puce est en C, alors elle y reste.

On désigne par A_n (resp. B_n et C_n) l’événement :
« À l’instant n, la puce est en A (resp. B et C). »

On pose $a_n = P(A_n)$, $b_n = P(B_n)$, et $c_n = P(C_n)$.

On a donc $a_0 = 1$, $b_0 = c_0 = 0$.

Pour traiter cet exercice, on pourra s’aider d’arbres pondérés.

1. Étude du mouvement pour $1 \leq n \leq 3$.

 a. Donner a_1, b_1 et c_1. Calculer $a_1 + b_1 + c_1$.

 b. À l’instant $n = 2$, dans quelles cases la puce peut-elle se trouver ? Déterminer a_2, b_2 et c_2.

 c. À l’instant $n = 3$, dans quelles cases la puce peut-elle se trouver ? En déduire a_3.
 Calculer b_3 et vérifier que $c_3 = \frac{17}{18}$.

2. Étude du cas général.

 a. Conjecturer les cases sur lesquelles la puce peut se trouver à l’instant n lorsque l’entier n est pair ($n = 2k$ avec $k \in \mathbb{N}$), et les cases sur lesquelles elle peut se trouver si l’entier n est impair ($n = 2k + 1$ avec $k \in \mathbb{N}$).
 En déduire (sans autre justification) la valeur de a_{2k+1}.

 b. Démontrer que :
 $$
 \begin{cases}
 b_{2k+1} = \frac{1}{3} a_{2k} \\
 a_{2k+2} = \frac{1}{2} b_{2k+1}
 \end{cases}
 $$

 c. Démontrer que pour tout entier naturel k, $a_{2k} = \frac{1}{6^k}$.

3. a. Déterminer le plus petit entier naturel N tel que :
 $$
 \forall n \in \mathbb{N}, \quad n \geq N \Rightarrow a_n \leq 10^{-6}.
 $$

 b. Montrer que la suite (a_n) est convergente et préciser sa limite.

Exercice 18. Équation $e^x = \frac{1}{x}$

(Source : ts-suites-18)

Le but de l’exercice est de démontrer que l’équation :

$$
(E) \quad e^x = \frac{1}{x}
$$

admet une unique solution dans l’ensemble \mathbb{R} des nombres réels.

On pose pour tout réel x :

$$
f(x) = x - e^{-x}.
$$
Démontrer que x est solution de (E) si et seulement si $f(x) = 0$.

Étude du signe de f.

a. Étudier le sens de variations de la fonction f sur \mathbb{R}.

b. En déduire que l’équation (E) possède une unique solution sur \mathbb{R}, notée α.

c. Démontrer que α appartient à l’intervalle $\left[\frac{1}{2} ; 1\right]$.

d. Étudier le signe de f sur l’intervalle $[0 ; \alpha]$.

On pose pour tout réel x de l’intervalle $[0 ; 1]$:

$$g(x) = \frac{1 + x}{1 + e^x}.$$

Démontrer que l’équation $f(x) = 0$ est équivalente à l’équation $g(x) = x$.

En déduire que α est l’unique réel vérifiant : $g(\alpha) = \alpha$.

Calculer $g'(x)$ et en déduire que la fonction g est croissante sur l’intervalle $[0 ; \alpha]$.

On considère la suite (u_n) définie par :

$$\begin{cases}
 u_0 = 0 \\
 u_{n+1} = g(u_n) \quad \forall n \in \mathbb{N}
\end{cases}$$

Démontrer par récurrence que, pour tout entier naturel $n : 0 \leq u_n \leq u_{n+1} \leq \alpha$.

En déduire que la suite (u_n) est convergente. On note ℓ sa limite.

Justifier l’égalité : $g(\ell) = \ell$. En déduire la valeur de ℓ.

À l’aide de la calculatrice, déterminer une valeur approchée de u_4 arrondie à la sixième décimale.

Exercice 19. Suite de points, suites imbriquées

On se donne deux points distincts A_0 et B_0.

Soit A_1 le milieu du segment $[A_0B_0]$ et B_1 celui de $[A_0A_1]$.

De façon générale, pour tout entier naturel n, on désigne par :

$$A_{n+1}$$ le milieu du segment $[A_nB_n]$ et B_{n+1} le milieu du segment $[A_nA_{n+1}]$.

On munit la droite (A_0B_0) du repère $(A_0 ; \vec{r})$ avec $\vec{r} = \overrightarrow{A_0B_0}$.

On note a_n et b_n les abscisses respectives des points A_n et B_n dans le repère $(A_0 ; \vec{r})$.

On a donc $a_0 = 0$ et $b_0 = 1$.

1. Construire une droite (A_0B_0) en prenant $A_0B_0 = 10$ cm.

 Sur cette droite, placer les points A_1 et B_1, puis les points A_2 et B_2.

 Calculer les valeurs de a_1, b_1, a_2 et b_2.

 Exercice 19. Suite de points, suites imbriquées

 (Source : ts-suites-19)

 Corrigé page 110
Exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n.

Démontrer que la suite (u_n) définie par :
\[u_n = a_n - b_n \]
est géométrique.

Démontrer que la suite (v_n) définie par :
\[v_n = 3a_n + 2b_n \]
est constante.

Les suites (a_n) et (b_n) sont-elles convergentes ? Que peut-on en déduire pour les points A_n et B_n lorsque n tend vers $+\infty$?

Exercice 20. Méthode de Newton
(Source : ts-suites-20)

On considère la fonction f définie sur \mathbb{R}^+_* par :
\[f(x) = e^{-x} - \sqrt{x} \]
dont la courbe représentative dans un repère orthonormé $(O ; \vec{i}, \vec{j})$ est nommée C.

1 Montrer que f est strictement décroissante sur \mathbb{R}^+_*.

2 Montrer que l’équation $f(x) = 0$ admet une unique solution sur $]0 ; 1[$. On la notera α.

3 Montrer que l’équation réduite de la tangente (T_0) à C au point d’abscisse $x = 1$ est :
\[y = -\left(\frac{2 + e}{2e} + 1 \right) x + \frac{4 - e}{2e} \].

On considère la suite $(x_n)_{n \geq 0}$ définie par $x_0 = 1$ et en considérant que pour tout entier naturel n, x_{n+1} est l’abscisse du point d’intersection de la tangente (T_n) à C au point d’abscisse x_n et de l’axe des abscisses.
Ainsi, x_1 est l’abscisse du point d’intersection de (T_0) et de l’axe des abscisses.

4 Montrer que $x_1 = \frac{4 - e}{2 + e}$.

5 a. Montrer que sur \mathbb{R}^+_*, $f'(x) \neq 0$.
 b. Montrer que pour tout entier naturel n :
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]
On considère l’algorithme suivant :

Algorithme 1

Entrées
- x est un réel
- i est un entier

Traitement
- x prend la valeur 1
- Pour i allant de 1 à 4 allant de x à p
 - rend la valeur x-(exp(-x)-√x)/(-exp(-x)-1/(2√x))

Fin du Pour

Sortie
- Afficher x

a. Recopier et compléter le tableau suivant (on donnera les valeurs approchées avec toutes les décimales affichées par la calculatrice) :

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. À quoi correspond la valeur affichée par cet algorithme?

c. D’après le tableau de valeurs trouvé à la question (a), émettre une conjecture quant à la limite de la suite \((x_n)_{n\geq 0}\).

On admet que, pour tout entier naturel \(n\), \(C\) est toujours au-dessus de \((T_n)\).

Expliquer les raisons pour lesquelles, pour tout entier naturel \(n \geq 1\), \(x_n \leq \alpha\).

Montrer que la suite \((x_n)_{n\geq 0}\) est croissante.

En déduire qu’elle converge vers \(\alpha\).

Exercice 21. L’escargot de Gardner

(Source : ts-suites-21)

Léo l’escargot avance à la vitesse de 1 m/h sur un élastique de 100 mètres qui peut s’allonger à l’infini.

Au début de chaque heure, on allonge l’élastique de 100 mètres de façon homogène, ce qui signifie qu’au début de la 1ère heure écoulée, l’escargot se trouvait à 1 mètre du point de départ avant l’allongement de l’élastique et se retrouve à 2 mètres du point de départ après car pour passer de 100 m à 200 m, on a multiplié par 2.

Au bout de la 2ème heure, Léo avance de 1 mètre et après allongement, il se trouve à 4,50 mètres. On note \(u_n\) la distance (en mètre) parcourue par Léo au bout de \(n\) heures avant l’allongement de l’élastique. Ainsi, \(u_0 = 0\), \(u_1 = 1\) et \(u_2 = 3\).

1. a. Expliquer la valeur de \(u_2\).
 b. Calculer \(u_3\).

2. Montrer que pour tout entier naturel \(n\) non nul, \(u_{n+1} = \left(1 + \frac{1}{n}\right) u_n + 1\).
3 On note p_n le pourcentage représentant l’avancement de Léo par rapport à la longueur de l’élastique (avant allongement) à l’étape n. Ainsi, $p_1 = 1$ et $p_2 = 1,5$.

Montrer que $p_3 = 1 + \frac{1}{2} + \frac{1}{3}$.

4 Montrer par récurrence que $p_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ pour tout entier naturel n non null.

5 Montrer par récurrence que pour tout entier naturel n, $p_{2n} \geq 1 + \frac{n}{2}$.

6 En déduire la limite de la suite (p_n).

Que peut-on alors conclure quant à Léo ? N’y a-t-il pas alors un paradoxe ?
Corrigé de l’exercice 1.

1. On a :

\[u_{n+1} - u_n = u_n + 2n + 3 - u_n \]
\[= 2n + 3 \]
\[\geq 0 \]

Ainsi, la suite \((u_n)\) est croissante.

2. a. Posons \(P(n)\) la propriété : \(u_n \geq n^2\).

- **Initialisation.**

 \(u_0 = 1 \geq 0\) donc \(P(0)\) est vraie.

- **Hérédité.**

 Supposons que pour un entier naturel \(k\) positif, \(P(k)\) est vraie (H.R.). Montrons alors que \(P(k+1)\) l’est aussi, c’est-à-dire que \(u_{k+1} \geq (k+1)^2\).

 \[
 u_{k+1} = u_k + 2k + 3 \\
 \geq k^2 + 2k + 3 \quad \text{(H.R.)} \\
 \geq k^2 + 2k + 1 + 2 \\
 \geq (k + 1)^2 + 2 \\
 \geq (k + 1)^2
 \]

 L’hérédité est alors vérifiée.

- **Conclusion.**

 Quel que soit l’entier naturel \(k\), \(P(k) \Rightarrow P(k+1)\).

 Ainsi, d’après le principe de récurrence, la propriété \(P(n)\) est vraie pour tout entier naturel \(n\).

b. D’après le théorème de comparaison des suites et d’après la question précédente, on a :

\[
\lim_{n \to +\infty} u_n \geq \lim_{n \to +\infty} n^2
\]

Or, \(\lim_{n \to +\infty} n^2 = +\infty\); donc

\[
\lim_{n \to +\infty} u_n = +\infty
\]
3 Calculons les premiers termes de la suite \((u_n)\) :

\[
\begin{align*}
 u_0 &= 1 \\
 u_1 &= u_0 + 2 \times 0 + 3 = 4 \\
 u_2 &= u_1 + 2 \times 1 + 3 = 9 \\
 u_3 &= u_2 + 2 \times 2 + 3 = 16 \\
 u_4 &= u_3 + 2 \times 3 + 3 = 25 \\
\end{align*}
\]

On peut alors conjecturer que \(u_n = (n + 1)^2\). Montrons cela par récurrence.

- **Initialisation.**
 Faites précédemment.

- **Hérédité.**
 On suppose que pour un entier naturel \(k\), \(u_k = (k + 1)^2\) (qui constitue la propriété \(P(k)\)). Montrons que \(u_{k+1} = (k + 2)^2\).

\[
\begin{align*}
 u_{k+1} &= u_k + 2k + 3 \\
 &= (k + 1)^2 + 2k + 3 \\
 &= k^2 + 4k + 4 \\
 &= (k + 2)^2 \\
\end{align*}
\]

L’hérédité est alors vérifiée.

- **Conclusion.**
 Quel que soit l’entier naturel \(k\), \(P(k) \Rightarrow P(k+1)\).
 Ainsi, d’après le principe de récurrence, la propriété \(P(n)\) est vraie pour tout entier naturel \(n\).

Corrigé de l’exercice 2.

1 Calculons :

\[
\begin{align*}
 u_1 &= \frac{1}{2 - u_0} \\
 u_1 &= \frac{1}{2} \\
 u_2 &= \frac{1}{2 - u_1} \\
 u_2 &= \frac{1}{2 - \frac{1}{2}} \\
 u_3 &= \frac{1}{2 - u_2} \\
 u_3 &= \frac{1}{2 - \frac{3}{2}} \\
\end{align*}
\]

2 Posons \(P(n)\) la propriété : \(u_n = \frac{n}{n + 1}\).

- **Initialisation.**
 Faite dans la question 1.

- **Hérédité.**
 Supposons que pour un entier naturel \(k\), \(P(k)\) est vraie (H.R.). Montrons alors que
\[P(k + 1) \text{ est aussi, c'est-à-dire que } u_{k+1} = \frac{n + 1}{n + 2}. \]

\[
u_{k+1} = \frac{1}{2 - u_n} = \frac{1}{2 - \frac{n}{n+1}} \quad \text{(H.R.)}
= \frac{n + 1}{n + 2}
\]

L’hérédité est alors vérifiée.

Conclusion.
Quel que soit l’entier naturel \(k \), \(P(k) \Rightarrow P(k + 1) \).
Ainsi, d’après le principe de récurrence, la propriété \(P(n) \) est vraie pour tout entier naturel \(n \).

Corrigé de l’exercice 3.

1. On a :
\[f'(x) = \frac{1}{(x + 1)^2} > 0. \]
Donc \(f \) est strictement croissante sur \([0 ; 2]\).
On en déduit alors :
\[1 \leq x \leq 2 \Rightarrow f(1) \leq f(x) \leq f(2) \]
Or, \(f(1) = \frac{3}{2} > 1 \) et \(f(2) = \frac{5}{3} < 2 \).
Ainsi,
\[x \in [1 ; 2] \Rightarrow f(x) \in [1 ; 2]. \]

2. Soit \(P(n) \) la propriété : \(u_n \in [1 ; 2] \). Démontrons qu’elle est vraie pour tout entier naturel \(n \) par récurrence.

- **Initialisation.**
 \(u_0 = 1 \in [1 ; 2] \).

- **Hérédité.**
 Supposons que \(P(k) \) soit vraie, où \(k \) est un entier naturel. Montrons alors que \(P(k+1) \)
 l’est aussi.
 D’après la question précédente, on a :
 \[u_k \in [1 ; 2] \Rightarrow f(u_k) \in [1 ; 2]. \]
Or, \(f(u_k) = u_{k+1} \) donc \(P(k+1) \) est vraie.
L’hérédité est alors vérifiée.

- **Conclusion.**
 On vient de montrer que \(P(0) \) est vraie et que pour un certain entier naturel \(k \),
 \(P(k) \Rightarrow P(k + 1) \).
Ainsi, d’après le principe de récurrence, \(P(n) \) est vrai pour tout entier naturel \(n \).
De plus, f est croissante sur $[1; 2]$ donc $f(u_n) > u_n$, c'est-à-dire : $u_{n+1} > u_n$.

3 De la question précédente, on peut conclure que la suite (u_n) est croissante et bornée, donc majorée.
Or, toute suite croissante et majorée converge.
Donc (u_n) est convergente.

Posons alors $\ell = \lim_{n \to +\infty} u_n$. Nous savons que $u_n \in [1; 2]$ pour tout entier naturel n, donc $\ell \in [1; 2]$ On a alors :

$$u_{n+1} = f(u_n) \iff \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n)$$
$$\iff \ell = f(\ell) \quad \text{car } f \text{ est continue}$$
$$\iff \ell = \frac{2\ell + 1}{\ell + 1}$$
$$\iff \ell^2 + \ell = 2\ell + 1$$
$$\iff \ell^2 - \ell - 1 = 0.$$

Le discriminant du polynôme $\ell^2 - \ell - 1$ est $\Delta = 5$ donc il possède deux racines :

$\ell_1 = \frac{1 - \sqrt{5}}{2} < 0$ et $\ell_2 = \frac{1 + \sqrt{5}}{2} \in [1; 2]$. Ainsi, $\ell = \frac{1 + \sqrt{5}}{2}$.

\[\text{Corrigé de l’exercice 4.}\]

1 Posons $\ell = \lim_{n \to +\infty} u_n$. On en déduit alors :

$$u_{n+1} = \frac{u_n + 6}{u_n + 2} \Rightarrow \ell = \frac{\ell + 6}{\ell + 2}$$
$$\Rightarrow \ell(\ell + 2) = \ell + 6$$
$$\Rightarrow \ell^2 + 2\ell - \ell - 6 = 0$$
$$\Rightarrow \ell^2 + \ell - 6 = 0.$$

Ainsi, ℓ est bien une racine du polynôme P.

2 $x_1 = 2$ est une racine évidente de P ; de plus, $x_1 x_2 = \frac{c}{a} = -6$, donc $x_2 = -3$. Les deux racines de P donc sont $\alpha = 2$ et $\beta = -3$.

3 On a $v_n = \frac{u_n - 2}{u_n + 3}$. Alors :

$$v_{n+1} = \frac{u_{n+1} - 2}{u_{n+1} + 3} = \frac{u_n + 6 - 2u_n - 4}{u_n + 6 + 3u_n + 6}$$
$$= \frac{-u_n + 2}{4u_n + 12} = \frac{1}{4} \times \frac{u_n - 2}{u_n + 3} = \frac{1}{4} v_n.$$
Ainsi, la suite \((v_n)\) est une suite géométrique de premier terme \(v_0 = \frac{u_0 - 2}{u_0 + 3} = -\frac{1}{4}\) et de raison \(q = -\frac{1}{4}\).

4 La suite \((v_n)\) converge vers « 0 » comme suite géométrique de raison strictement comprise entre \(-1\) et 1. Ainsi :

\[
\lim_{n \to +\infty} \frac{u_n - 2}{u_n + 3} = 0 \quad \Rightarrow \quad \lim_{n \to +\infty} (u_n - 2) = 0
\]

\[
\Rightarrow \lim_{n \to +\infty} u_n = 2
\]

Corrigé de l’exercice 5.

1 \(v_{n+1} - v_n = \frac{1}{u_{n+1} - \frac{1}{2}} - \frac{1}{u_n - \frac{1}{2}}\)

\[
= \frac{1}{\frac{4u_{n-1}}{4u_n} - \frac{1}{2}} - \frac{1}{u_n - \frac{1}{2}}
\]

\[
= \frac{1}{\frac{4u_{n-1} - 2u_n}{4u_n}} - \frac{1}{u_n - \frac{1}{2}}
\]

\[
= \frac{1}{\frac{4u_{n-1} - 2u_n}{4u_n}} - \frac{1}{u_n - \frac{1}{2}}
\]

\[
= \frac{4u_n}{2u_n - 1} - \frac{1}{u_n - \frac{1}{2}}
\]

\[
= \frac{2u_n - 1}{u_n - \frac{1}{2}} - \frac{1}{u_n - \frac{1}{2}}
\]

\[
= \frac{2u_n}{u_n - \frac{1}{2}} - \frac{1}{u_n - \frac{1}{2}}
\]

\[
= 2 \left(u_n - \frac{1}{2} \right)
\]

\[
= 2
\]

La suite \((v_n)\) est donc arithmétique de premier terme \(v_0 = \frac{1}{u_0 - \frac{1}{2}} = \frac{2}{5}\) et de raison \(r = 2\).

2 D’après ce qui précède, \(\lim_{n \to +\infty} u_n = +\infty\) car \(r > 0\) d’où :

\[
\lim_{n \to +\infty} \frac{1}{u_n - \frac{1}{2}} = +\infty ,
\]

ce qui signifie que :

\[
\lim_{n \to +\infty} \left(u_n - \frac{1}{2} \right) = 0.
\]

D’où :

\[
\lim_{n \to +\infty} u_n = \frac{1}{2}
\]
Corrigé de l'exercice 6.

1 On trouve :

- \(u_1 = -0,5 \)
- \(u_2 = 0,75 \)
- \(u_3 = 3,375 \)
- \(u_4 = 6,6875 \)
- \(u_5 = 10,34375 \)
- \(u_6 = 14,171875 \)
- \(u_7 = 18,0859375 \)
- \(u_8 = 22,04296875 \)
- \(u_9 = 26,021484375 \)

On peut alors conjecturer que \((u_n)\) est strictement croissante à partir de \(n = 1\)

2 a. \(v_{n+1} = u_{n+1} - 4(n + 1) + 10 \)

\[= \frac{1}{2}u_n + 2n - 1 - 4n - 4 + 10 \]
\[= \frac{1}{2}u_n - 2n + 5 \]
\[= \frac{1}{2}(u_n - 4n + 10) \]
\[= \frac{1}{2}v_n. \]

On déduit alors que \((v_n)\) est une suite géométrique de raison \(\frac{1}{2}\) et de premier terme \(v_0 = u_0 - 4 \times 0 + 10 = 11\).

b. On a alors : \(v_n = 11 \times \frac{1}{2^n} \) et donc :

\[u_n = v_n + 4n - 10 = \frac{11}{2^n} + 4n - 10. \]

c. \(S_n = \sum_{k=0}^{n} \left(\frac{11}{2^k} + 4n - 10 \right) \)

\[= 11 \sum_{k=0}^{n} \frac{1}{2^k} + 4 \sum_{k=0}^{n} k - 10 \sum_{k=0}^{n} 1 \]
\[= 11 \left(\frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} \right) + 4 \times \frac{n(n + 1)}{2} - 10(n + 1) \]
\[= 22 \left(1 - \frac{1}{2^{n+1}} \right) + 2(n - 5)(n + 1). \]

Corrigé de l'exercice 7. Posons \(P(n) \) la propriété :

\[(P_n) : 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]

1 Initialisation.

\(S_1 = 1^2 = 1 \) et \(\frac{1 \times (1 + 1)(2 \times 1 + 1)}{6} = \frac{6}{6} = 1 \).

Donc \(P(1) \) est vraie.
2 Hérédité.
Supposons que pour un entier naturel k, la propriété $P(k)$ est vraie (hypothèse de récurrence). Montrons alors que $P(k+1)$ l’est aussi, c’est-à-dire que :

$$1^2 + 2^2 + \cdots + k^2 + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

Par hypothèse de récurrence, on a :

$$1^2 + 2^2 + \cdots + k^2 + (k+1)^2 = S_k + (k+1)^2$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

$$= (k+1) \left[\frac{k(2k+1)}{6} + (k+1) \right]$$

$$= (k+1) \left[\frac{k(2k+1) + 6(k+1)}{6} \right]$$

$$= \frac{(k+1)(2k^2+7k+6)}{6}$$

« $k_1 = -2$ » est une racine évidente du polynôme $2k^2 + 7k + 6$ donc la seconde racine k_2 est telle que $k_1k_2 = \frac{c}{a}$, donc $k_2 = -\frac{1}{2} \times \frac{6}{2} = -\frac{3}{2}$.

Donc $2k^2 + 7k + 6 = 2(k+2) \left(k + \frac{3}{2} \right) = (k+2)(2k+3)$.

Finalement, on a :

$$1^2 + 2^2 + \cdots + k^2 + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

L’hérédité est donc vérifiée.

3 Conclusion.
Quel que soit l’entier naturel $k \geq 1$, $P(k) \Rightarrow P(k+1)$.
Ainsi, d’après le principe de récurrence, la propriété $P(n)$ est vraie pour tout entier $n \geq 1$.

Corrigé de l’exercice 8.

1 $v_{n+1} = u_{n+1} + Q(n+1)$

$$= \lambda u_n + P(n) + Q(n+1)$$

$$= \lambda \left(u_n + \frac{1}{\lambda} P(n) + \frac{1}{\lambda} Q(n+1) \right).$$

Ainsi,

$$(v_n)$$ est une suite géométrique $\Leftrightarrow u_n + \frac{1}{\lambda} P(n) + \frac{1}{\lambda} Q(n+1) = v_n$

$$\Leftrightarrow \frac{1}{\lambda} P(n) + \frac{1}{\lambda} Q(n+1) = Q(n)$$

$$\Leftrightarrow P(n) = \lambda Q(n) - Q(n+1).$$
2 Posons $Q(n) = \alpha n + \beta$.
D’après la question précédente, pour tout entier naturel n,

$$P(n) = \lambda Q(n) - Q(n + 1)$$

$$\iff an + b = \lambda an + \lambda \beta - an - \alpha - \beta$$

$$\iff (a + \alpha - \lambda) n + b + \alpha + \beta - \lambda \beta = 0$$

$$\iff \begin{cases} a + \alpha(1 - \lambda) = 0 \\ b + \alpha + \beta(1 - \lambda) = 0 \end{cases}$$

De la 1ère équation, on déduit :

$$\alpha = \frac{a}{\lambda - 1}$$

et de la 2ème équation, on tire :

$$\beta = \frac{1}{\lambda - 1} \left(b + \frac{a}{\lambda - 1} \right).$$

Ainsi,

$$Q(n) = \frac{a}{\lambda - 1} n + \frac{b}{\lambda - 1} + \frac{a}{(\lambda - 1)^2}.$$

3 Nous savons que (v_n) est une suite géométrique de raison λ. Ainsi, $v_n = v_0 \lambda^n$ pour tout entier naturel n.

Or, $v_0 = u_0 + Q(0) = u_0 + \frac{b}{\lambda - 1} + \frac{a}{(\lambda - 1)^2}$, donc :

$$\forall n \in \mathbb{N}, \quad v_n = \left(u_0 + \frac{b}{\lambda - 1} + \frac{a}{(\lambda - 1)^2} \right) \lambda^n.$$

De plus, $v_n = u_n + Q(n)$, donc $u_n = v_n - Q(n)$. Ainsi,

$$\forall n \in \mathbb{N}, \quad u_n = \left(u_0 + \frac{b}{\lambda - 1} + \frac{a}{(\lambda - 1)^2} \right) \lambda^n - \frac{a}{\lambda - 1} n - \frac{b}{\lambda - 1} - \frac{a}{(\lambda - 1)^2}.$$

4 Application : $u_{n+1} = 2u_n - 3n + 7$ donc $\lambda = 2$, $a = -3$ et $b = 7$. D’après la question précédente, on a :

$$\forall n \in \mathbb{N}, \quad u_n = \left(5 + \frac{7}{2 - 1} + \frac{-3}{(2 - 1)^2} \right) \times 2^n - \frac{-3}{2 - 1} n - \frac{7}{2 - 1} - \frac{-3}{(2 - 1)^2}$$

soit :

$$\forall n \in \mathbb{N}, \quad u_n = 9 \times 2^n + 3n - 4.$$

Vérifions sur les premiers termes :

<table>
<thead>
<tr>
<th>n</th>
<th>Avec la formule de récurrence</th>
<th>Avec la formule trouvée</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$u_0 = 5$ par définition</td>
<td>$u_0 = 9 \times 2^0 + 3 \times 0 - 4 = 9 - 4 = 5$</td>
</tr>
<tr>
<td>1</td>
<td>$u_1 = 2u_0 - 3 \times 0 + 7 = 10 + 7 = 17$</td>
<td>$u_1 = 9 \times 2^1 + 3 \times 1 - 4 = 18 + 3 - 4 = 17$</td>
</tr>
<tr>
<td>2</td>
<td>$u_2 = 2u_1 - 3 \times 1 + 7 = 34 - 3 + 7 = 38$</td>
<td>$u_2 = 9 \times 2^2 + 3 \times 2 - 4 = 36 + 6 - 4 = 38$</td>
</tr>
</tbody>
</table>
Corrigé de l’exercice 9.

1 Pour que (v_n) soit géométrique de raison q, il faut que, pour tout entier naturel n :

\[
v_{n+1} = qv_n
\]

\[
\Leftrightarrow \frac{1}{2} u_n - \frac{2}{3} + \lambda = q (u_n + \lambda)
\]

\[
\Leftrightarrow \frac{1}{2} \left(u_n - \frac{4}{3} + 2\lambda \right) = q (u_n + \lambda).
\]

Ainsi, il faut que $q = \frac{1}{2}$ et que $-\frac{4}{3} + 2\lambda = \lambda$, soit $\lambda = \frac{4}{3}$.

2 (v_n) est une suite géométrique de raison $q = \frac{1}{2}$, donc elle converge vers 0 (car sa raison est strictement comprise entre 0 et 1).

\[
\lim_{n \to +\infty} \left(u_n + \frac{4}{3} \right) = 0,
\]

ce qui signifie que \[
\lim_{n \to +\infty} u_n = -\frac{4}{3}.
\]

Corrigé de l’exercice 10. Pour tout entier naturel n, on a :

$-1 \leq \cos(n) \leq 1$

Ainsi, on a :

\[
\frac{n - 1}{n^2} \leq \frac{n + \cos(n)}{n^2} \leq \frac{n + 1}{n^2}
\]

De plus,

\[
\lim_{n \to +\infty} \frac{n - 1}{n^2} = \lim_{n \to +\infty} \frac{n}{n^2} = \lim_{n \to +\infty} \frac{1}{n} = 0
\]

De même,

\[
\lim_{n \to +\infty} \frac{n + 1}{n^2} = 0
\]

Ainsi, d’après le théorème des gendarmes,

\[
\lim_{n \to +\infty} u_n = 0
\]

Corrigé de l’exercice 11.

1 \[
a_{n+1} = u_{n+1} + v_{n+1} = 0, 6u_n + 0, 3v_n + 0, 4u_n + 0, 7v_n = u_n + v_n = a_n
\]

Ainsi, (a_n) est constante.

Or, $a_0 = u_0 + v_0 = \frac{1}{2} + \frac{1}{2} = 1$ donc $a_n = 1$ pour tout entier naturel n.

96
2
\[b_{n+1} = 4u_{n+1} - 3v_{n+1} \]
\[= 4(0, 6u_n + 0, 3v_n) - 3(0, 4u_n + 0, 7v_n) \]
\[= 2, 4u_n + 1, 2v_n - 1, 2u_n - 2, 1v_n \]
\[= 1, 2u_n - 0, 9v_n \]
\[= 0, 3(4u_n - 3v_n) \]
\[= 0, 3b_n \]

Ainsi, \((b_n)\) est une suite arithmétique de raison \(q = 0, 3\) et de premier terme :

\[b_0 = 4u_0 - 3v_0 \]
\[= 4 \times 0, 5 - 3 \times 0, 5 \]
\[b_0 = 0, 5. \]

3
D’après la question précédente, on peut écrire :

\[\forall n \in \mathbb{N}, b_n = \frac{1}{2}(0, 3)^n. \]

De plus, on a :

\[\begin{cases}
 a_n = u_n + v_n \\
 b_n = 4u_n - 3v_n
\end{cases} \iff \begin{cases}
 3a_n = 3u_n + 3v_n \\
 b_n = 4u_n - 3v_n
\end{cases} \]
\[\equiv \begin{cases}
 b_n = 4u_n - 3v_n \\
 3a_n + b_n = 7u_n
\end{cases} \iff \begin{cases}
 3v_n = 4 \left(\frac{3}{7}a_n + \frac{1}{7}b_n \right) - b_n \\
 u_n = \frac{3}{7}a_n + \frac{1}{7}b_n
\end{cases} \]
\[\iff \begin{cases}
 v_n = \frac{4}{7}a_n - \frac{1}{7}b_n \\
 u_n = \frac{3}{7}a_n + \frac{1}{7}b_n
\end{cases} \iff \begin{cases}
 v_n = \frac{4}{7} - \frac{1}{14}(0, 3)^n \\
 u_n = \frac{3}{7} + \frac{1}{14}(0, 3)^n
\end{cases} \]

4
\[\lim_{n \to +\infty} (0, 3)^n = 0 \text{ car } 0 < 0, 3 < 1. \]

Ainsi, \[\lim_{n \to +\infty} (u_n) = \frac{3}{7}. \]

Corrigé de l’exercice 12.

1
\(a. \)
\(T_1 \) et \(P_1 \) étant équiprobables, \(p(T_1) = p(P_1) = 0, 5. \)

D’après l’énoncé la probabilité de prendre le toboggan après avoir pris le plongeoir est égale à \(p_{P_1}(T_2) = 1 - 0, 8 = 0, 2. \)

Toujours d’après l’énoncé \(p_{T_1}(T_2) = 0, 3. \)

\(b. \)
D’après le principe des probabilités totales :

\(p(T_2) = p(T_1 \cap T_2) + p(P_1 \cap T_2) = 0, 5 \times 0, 3 + 0, 5 \times 0, 2 = 0, 15 + 0, 1 = 0, 25 = \frac{1}{4}. \)
c. Recopier et compléter l’arbre suivant :

\[
\begin{array}{c}
T_n \\
\downarrow \\
T_{n+1} \\
\downarrow \\
0,3 \\
\downarrow \\
T_n \\
\downarrow \\
0,7 \\
\downarrow \\
P_{n+1} \\
\downarrow \\
1 - u_n \\
\downarrow \\
P_n \\
\downarrow \\
0,2 \\
\downarrow \\
T_{n+1} \\
\downarrow \\
0,8 \\
\downarrow \\
P_1 \\
\end{array}
\]

d. Toujours d’après le principe des probabilités totales :

\[
u_{n+1} = p(T_{n+1})
= p(T_n \cap T_{n+1}) + p(P_n \cap T_{n+1})
= u_n \times 0,3 + (1 - u_n) \times 0,2
= 0,3u_n + 0,2 - 0,2u_n
= 0,1u_n + 0,2.
\]

e. La calculatrice donne \(u_1 = 0,5 ; u_2 = 0,25 ; u_3 = 0,225 ; u_4 = 0,225 ; u_5 = 0,2225. \)

Il semble que \(u_n \) ait pour limite \(0,222 \ldots \).

2 a. \(v_{n+1} = u_{n+1} - \frac{2}{9} \)

\[
= 0,1u_n + 0,2 - \frac{2}{9}
= \frac{1}{10}u_n + \frac{1}{5} - \frac{2}{9}
= \frac{1}{10}u_n - \frac{1}{45}
= \frac{1}{10}(u_n - \frac{2}{9})
= \frac{1}{10}v_n.
\]

La suite \((v_n)\) est donc géométrique de raison \(\frac{1}{10} \); son premier terme est

\[
v_1 = u_1 - \frac{2}{9} = \frac{1}{2} - \frac{2}{9} = \frac{5}{18}.
\]

b. On sait que \(v_n = v_1 \left(\frac{1}{10}\right)^{n-1} = \frac{5}{18} \left(\frac{1}{10}\right)^{n-1} \).

Comme \(u_n = v_n + \frac{2}{9} \), on a \(u_n = \frac{5}{18} \left(\frac{1}{10}\right)^{n-1} + \frac{2}{9} \).

c. Comme \(0 < \frac{1}{10} < 1 \), \(\lim_{n \to +\infty} \left(\frac{1}{10}\right)^{n-1} = 0 \), donc \(\lim_{n \to +\infty} u_n = \frac{2}{9} \).

Or \(\frac{2}{9} = 0,222 \ldots \) ce qui valide la conjecture faite à la question 1. e.
Corrigé de l’exercice 13.

Partie A

1 \[\lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0 \text{ donc } \lim_{x \to +\infty} \ln \left(1 + \frac{1}{x} \right) = \ln 1 = 0. \]

\[\lim_{x \to 0^+} \left(\frac{1}{x} \right) = +\infty \text{ donc } \lim_{x \to 0^+} f(x) = +\infty. \]

2 \[f'(x) = \frac{-\frac{1}{x^2}}{1 + \frac{1}{x}} = \frac{-1}{x^2 \left(1 + \frac{1}{x} \right)}. \]

On sait que sur \(\mathbb{R}_+^* \), \(1 + \frac{1}{x} > 0 \) donc \(f'(x) < 0. \)
Ainsi, \(f \) est strictement décroissante sur \(]-\infty ; -1[\) et sur \(]0 ; +\infty[. \)

3 On a le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>+\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>+\infty</td>
<td>0</td>
</tr>
</tbody>
</table>

Partie B

1 \[g'(x) = f'(x) - 1 \]
\[= \frac{-1}{x^2 + x} - 1 \]
\[= \frac{-1 - x^2 - x}{x(x + 1)} \]
\[= \frac{x^2 + x + 1}{-x(x + 1)}. \]

Or, le discriminant de \(x^2 + x + 1 \) étant \(\Delta = -3 < 0 \), ce polynôme est toujours strictement positif.
De plus, \(x(x + 1) > 0 \) sur \(\mathbb{R}_+^* \); donc \(g'(x) < 0 \) sur \(\mathbb{R}_+^* \).
\(g \) est donc strictement décroissante sur \(\mathbb{R}_+^* \).

2 \(g \) est strictement décroissante et continue sur \(\left[\frac{1}{2} ; 1 \right] \).
De plus, \(g \left(\frac{1}{2} \right) = \ln 3 - \frac{1}{2} \approx 0,6 \) et \(g(1) = \ln 2 - 1 \approx -0,3. \) Donc 0 est une valeur intermédiaire entre \(g \left(\frac{1}{2} \right) \) et \(g(1) \). D’après le corollaire du théorème des valeurs intermédiaires, il existe alors une unique valeur \(\alpha \) sur \(\left[\frac{1}{2} ; 1 \right] \) telle que \(g(\alpha) = 0. \)
\[g(x) = 0 \iff f(x) - x = 0 \iff f(x) = x. \]
Ainsi, \(\alpha \) est aussi l’unique solution de l’équation \(f(x) = x \) sur \(\left[\frac{1}{2} ; 1 \right] \).
Partie C

1. \(v_0 = u_0 = 1. \)
\[v_1 = u_2 = f(u_1) = f(f(u_0)) = f(f(1)) = f(\ln 2) = \ln \left(1 + \frac{1}{\ln 2}\right) \approx 0,893. \]
\[v_2 = u_4 = f(u_3) = f(f(u_2)) \approx f(f(0,893)) \approx f(0,751) \approx 0,846. \]

\[v_{n+1} = u_{2(n+1)} \]
\[= u_{2n+2} \]
\[= u_{N+2} \quad N = 2n \]
\[= f(u_{N+1}) \]
\[= f(f(u_N)) \]
\[v_{n+1} = f(f(u_{2n})) \]

2. On pose \((\mathcal{P}_n)\) la propriété : « \(\frac{1}{2} \leq v_{n+1} \leq v_n \leq 1 \) ».

- **Initialisation.**
 D’après la question 1, \(\frac{1}{2} \leq v_1 \leq v_0 \leq 1. \)
 Par conséquent, \((\mathcal{P}_n)\) est vraie pour \(n = 0 \).

- **Hérédité.**
 On suppose que \((\mathcal{P}_n)\) est vraie pour un \(n \) fixé. Montrons que \((\mathcal{P}_{n+1})\) l’est aussi.

\[\frac{1}{2} \leq v_{n+1} \leq v_n \leq 1 \]
\[\iff \frac{1}{2} \leq u_{2n+2} \leq u_{2n} \leq 1 \]
\[\iff f \left(\frac{1}{2} \right) \geq f(u_{2n+2}) \geq f(u_{2n}) \leq f(1) \quad \text{car } f \text{ est décroissante} \]
\[\iff f \left(f \left(\frac{1}{2} \right) \right) \leq f \left(f(u_{2n+2}) \right) \leq f \left(f(u_{2n}) \right) \leq f(f(1)) \]

Or, \(v_{n+1} = f(f(u_{2n})) \) et donc \(v_{n+1} = f(f(u_{2(n+1)})) \), soit \(v_{n+2} = f(f(u_{2n+2})). \)
\[\iff f \left(f \left(\frac{1}{2} \right) \right) \leq v_{n+2} \leq v_{n+1} \leq f(f(1)) \]

Or, \(f \left(\frac{1}{2} \right) = \ln 3 \) donc \(f \left(f \left(\frac{1}{2} \right) \right) = \ln \left(1 + \frac{1}{\ln 3} \right) \approx 0,65 > \frac{1}{2}. \)

De plus, \(f(1) = \ln 2 \) donc \(f(f(1)) = \ln(1 + \frac{1}{\ln 2}) \approx 0,89 < 1. \)
\[\iff \frac{1}{2} \leq v_{n+2} \leq v_{n+1} \leq 1 \]

L’hérédité est alors vérifiée.
Ainsi, \((\mathcal{P}_n)\) est vraie pour tout entier naturel \(n \).

3. De la question précédente, on déduit que \((v_n)\) est décroissante \((v_{n+1} \leq v_n) \) et minorée.

Or, toute suite décroissante et minorée converge.
Donc, \((v_n)\) converge.
$v_n = u_{2n}$ ainsi, \[\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_n. \]
Notons \(\ell \) cette limite. Alors, \(\ell > 0 \) d’après la question 3 de cette partie.
Or, \(u_{n+1} = f(u_n) \) donc :
\[
\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n)
\]
\[\iff \lim_{n \to +\infty} u_{n+1} = f\left(\lim_{n \to +\infty} u_n \right) \text{ car } f \text{ est continue} \]
\[\iff \ell = f(\ell) \]

Or, nous avons montré que l’équation \(f(x) = x \) admettait une unique solution sur \(\mathbb{R}_+^* \) : \(\alpha \).
Ainsi, \(\ell = \alpha \).
La suite \((v_n) \) converge donc vers \(\alpha \).

Partie D

1. La boucle « Tant que » a pour but de calculer les termes de la suite \((v_n) \); en prenant 1 terme sur 2 de la suite \((u_n) \), on obtient ceux de \((v_n) \).

 En ayant un terme \(v_n = u_{2n} \), pour obtenir \(v_{n+1} \), on doit calculer \(f(v_n) \) (ligne 9) puis \(f(f(v_n)) \) (ligne 10), d’où les lignes 9 et 10 identiques.

2. On peut remplacer ces deux lignes par :

 \[a \text{ prend la valeur } \ln(1/\ln(1/1/a)) \]

Corrigé de l’exercice 14.

1. \(a_{n+1} = p_1(\alpha u_n + \beta v_n) + q_1(\lambda u_n + \mu v_n) \]
 \[= (\alpha p_1 + \lambda q_1)u_n + (\beta p_1 + \mu q_1)v_n. \]

 Pour que \((a_n) \) soit constante, il faut que \(a_{n+1} = a_n \), soit :
 \[
 \begin{cases}
 \alpha p_1 + \lambda q_1 = 1 & \times \mu \\
 \beta p_1 + \mu q_1 = 1 & \times \lambda
 \end{cases} \iff (L_1) - (L_2) : (\alpha \mu - \beta \lambda)p_1 = \mu - \lambda
 \]

 \[\iff p_1 = \frac{\mu - \lambda}{\alpha \mu - \beta \lambda} \]

 De même,

 \[
 \begin{cases}
 \alpha p_1 + \lambda q_1 = 1 & \times \beta \\
 \beta p_1 + \mu q_1 = 1 & \times \alpha
 \end{cases} \iff (L_1) - (L_2) : (\alpha \mu - \beta \lambda)q_1 = \alpha - \beta
 \]

 \[\iff q_1 = \frac{\alpha - \beta}{\alpha \mu - \beta \lambda} \]

2. a. \(b_{n+1} = (\alpha p_2 + \lambda q_2)u_n + (\beta p_2 + \mu q_2)v_n \]
 \[= \frac{\alpha p_2 + \lambda q_2}{p_2} p_2 (\beta p_2 + \mu q_2) v_n. \]

 Pour que \((b_n) \) soit géométrique, il faut que :
 \[\frac{p_2 (\beta p_2 + \mu q_2)}{\alpha p_2 + \lambda q_2} = q_2 \iff \frac{p_2}{q_2} = \frac{\alpha p_2 + \lambda q_2}{(\beta p_2 + \mu q_2)}. \]
b. \[
\frac{p_2}{q_2} = \frac{\alpha p_2 + \lambda q_2}{(\beta p_2 + \mu q_2)} \iff \beta p_2^2 + \mu p_2 q_2 = \alpha p_2 q_2 + \lambda q_2^2
\]
\[
\iff \beta p_2^2 + (\mu - \alpha) p_2 q_2 - \lambda q_2^2 = 0
\]
\[
\iff p_2^2 + \frac{\mu - \alpha}{\beta} p_2 q_2 - \frac{\lambda}{\beta} q_2^2 = 0
\]
\[
\iff \left(p_2 + \frac{\mu - \alpha}{2\beta} q_2 \right)^2 - \left(\frac{\mu - \alpha}{2\beta} \right)^2 q_2^2 = 0
\]
\[
\iff \left(p_2 + \frac{\mu - \alpha}{2\beta} q_2 \right)^2 = \frac{(\mu - \alpha)^2 + 4\beta \lambda}{4\beta^2} q_2^2
\]

c. De l’égalité précédente, on déduit :
\[
\left| p_2 + \frac{\mu - \alpha}{2\beta} q_2 \right| = \frac{\sqrt{(\mu - \alpha)^2 + 4\beta \lambda}}{2|\beta|} |q_2|.
\]
On en déduit :
\[
p_2 + \frac{\mu - \alpha}{2\beta} q_2 = \frac{\sqrt{(\mu - \alpha)^2 + 4\beta \lambda}}{2|\beta|} |q_2|
\]
ou
\[
-p_2 - \frac{\mu - \alpha}{2\beta} q_2 = \frac{\sqrt{(\mu - \alpha)^2 + 4\beta \lambda}}{2|\beta|} |q_2|.
\]
Soit :
\[
p_2 = \frac{\sqrt{(\mu - \alpha)^2 + 4\beta \lambda}}{2|\beta|} |q_2| + \frac{\alpha - \mu}{2\beta} q_2
\]
ou
\[
p_2 = -\frac{\sqrt{(\mu - \alpha)^2 + 4\beta \lambda}}{2|\beta|} |q_2| + \frac{\alpha - \mu}{2\beta} q_2.
\]
On en déduit alors :
\[
p_2 = \frac{\sqrt{(\mu - \alpha)^2 + 4\beta \lambda + \alpha - \mu}}{2\beta} q_2 \quad \text{ou} \quad p_2 = -\frac{\sqrt{(\mu - \alpha)^2 + 4\beta \lambda + \alpha - \mu}}{2\beta} q_2.
\]

d. Si \(p_2 = q_2\), alors :
\[
b_{n+1} = p_2 (u_{n+1} + v_{n+1})
\]
\[
= p_2 ((\alpha + \lambda) u_n + (\beta + \mu) v_n)
\]
\[
= p_2 (\alpha + \lambda) \left(u_n + \frac{\beta + \mu}{\alpha + \lambda} \right).
\]
Pour que \((b_n)\) soit géométrique, il faut donc que \(\frac{\beta + \mu}{\alpha + \lambda}\), soit \(\beta + \mu = \alpha + \lambda\).

3 On prend \(\alpha = 0, 6\), \(\beta = 0, 3\), \(\lambda = 0, 4\), \(\mu = 0, 7\) et \(q_2 = -3\).
On trouve facilement \(p_1 = q_1 = 1\).
D’après la formule trouvée à la question 2.(c), on trouve deux valeurs possibles pour \(p_2\) : \(-3\) ou \(4\).
Or, la question 2.(d) nous dit que si \(q_2 = p_2\), alors on doit avoir \(\beta + \mu = \alpha + \lambda\), ce qui n’est pas le cas ici.
Donc $p_2 = 4$.
Finalement, on a :
\[
\forall n \in \mathbb{N}, \left\{ \begin{array}{l}
u_{n+1} = 0, 6\nu_n + 0, 3\upsilon_n \\
v_{n+1} = 0, 4\nu_n + 0, 7\upsilon_n
\end{array} \right.
\]
et
\[
\forall n \in \mathbb{N}, \left\{ \begin{array}{l}a_n = \nu_n + \upsilon_n \\
b_n = 4\nu_n - 3\upsilon_n
\end{array} \right.
\]

Corrigé de l’exercice 15.

1. Notons $\lim_{n \to +\infty} u_n = \alpha$.
Alors,
\[
u_{n+1} = f(u_n) \Rightarrow \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} f(u_n).
\]
Or, f est continue donc $\lim_{n \to +\infty} f(u_n) = f\left(\lim_{n \to +\infty} u_n\right) = f(\alpha)$.
Ainsi,
\[
\alpha = f(\alpha)
\]

2. $u_{n+1} = u_n(1 - u_n), u_0 = 0, 4$.
a. $u_{n+1} - u_n = u_n - u_n^2 - u_n = -u_n^2$
\[
\leq 0 \text{ car un carré est toujours positif ou nul.}
\]
Ainsi, pour tout entier naturel n, $u_{n+1} \leq u_n$; la suite (u_n) est donc décroissante.
b. **Initialisation.**
 $u_0 = 0, 4$ donc $0 \leq u_0 \leq 1$.

 Hérédité.
 On suppose que pour un entier n donné, $0 \leq u_n \leq 1$.
 $u_{n+1} = u_n(1 - u_n)$; de plus, par hypothèse de récurrence, $0 \leq u_n \leq 1$ et donc $0 \leq 1 - u_n \leq 1$.
 Par produit, $0 \leq u_n(1 - u_n) \leq 1$. Donc $0 \leq u_{n+1} \leq 1$.
 L’hérédité est alors vérifiée : $u_n \Rightarrow u_{n+1}$.
 Par conséquent, pour tout entier naturel n, $0 \leq u_n \leq 1$.
c. La suite (u_n) étant décroissante et minorée, elle converge. Sa limite α vérifie :
 \[
 \alpha = \alpha(1 - \alpha)
 \]
 \[
 \iff \alpha = \alpha - \alpha^2
 \]
 \[
 \iff 0 = -\alpha^2
 \]
 \[
 \iff \alpha = 0
 \]
Ainsi, $\lim_{n \to +\infty} u_n = 0$.
d. Avec de telles hypothèses, la population de coccinelles tend à disparaître.

3. $u_{n+1} = 1, 8u_n(1 - u_n), u_0 = 0, 3$.
a. $f(x) = 1, 8x(1 - x) = 1, 8(x - x^2)$ donc $f'(x) = 1, 8(1 - 2x)$.
Donc $f'(x) \geq 0 \iff 1 - 2x \geq 0$
\[
\iff 1 \geq 2x
\]
\[
\iff x \leq \frac{1}{2}
\]
De plus, \(f \left(\frac{1}{2} \right) = 1,8 \times 0,5 \times 1,5 = 0,45 \in \left[0 ; \frac{1}{2} \right] \).

D'où le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(0)</th>
<th>(\frac{1}{2})</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(f)</td>
<td>0</td>
<td>0,45</td>
<td>0</td>
</tr>
</tbody>
</table>

b. • Initialisation.

\(u_0 = 0,3 \) et \(u_1 = f(0,3) = 1,8 \times 0,3 \times 0,7 = 0,378 \).

Donc \(0 \leq u_0 \leq u_1 \leq \frac{1}{2} \).

• Hérédité.

Supposons que pour un entier \(n \) donné, \(0 \leq u_n \leq u_{n+1} \leq \frac{1}{2} \).

La fonction \(f \) étant croissante sur \(\left[0 ; \frac{1}{2} \right] \),

\[
0 \leq u_n \leq u_{n+1} \leq \frac{1}{2}
\]

\(\Leftrightarrow f(0) \leq f(u_n) \leq f(u_{n+1}) \leq f \left(\frac{1}{2} \right) \)

\(\Leftrightarrow 0 \leq u_{n+1} \leq u_{n+2} \leq \frac{1}{2} \)

L’hérédité est alors vérifiée.

Ainsi, la propriété est vraie pour tout entier naturel \(n : 0 \leq u_n \leq u_{n+1} \leq \frac{1}{2} \)

c. De la question précédente, on déduit que \((u_n) \) est croissante \((u_{n+1} \geq u_n) \) et majorée (par \(\frac{1}{2} \)) donc elle converge.

Sa limite \(\alpha \) vérifie :

\[
\alpha = f(\alpha) \Leftrightarrow \alpha = 1,8\alpha(1 - \alpha) \Leftrightarrow 1 = 1,8(1 - \alpha) \quad \text{car} \ \alpha \neq 0
\]

\(\Leftrightarrow \frac{1}{1,8} = 1 - \alpha \)

\(\Leftrightarrow \alpha = 1 - \frac{1}{1,8} \)

\(\Leftrightarrow \alpha = \frac{4}{9} \)

Ainsi, \(\lim_{n \to +\infty} u_n \approx 0,4444444444 \).

d. On conclut de la question précédente qu’à long terme, la population de coccinelles se rapprochera de 4444444.
Corrigé de l’exercice 16.

1 On peut écrire :

\[\varphi(x) = \frac{\ln \left(x^2 \left(1 + \frac{1}{x} \right) \right)}{x} \]

\[= \frac{\ln (x^2) + \ln \left(1 + \frac{1}{x} \right)}{x} \]

\[= 2 \ln x + \frac{1}{x} \ln \left(1 + \frac{1}{x} \right) \]

Or,

- \[\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \text{ (cours)} \]
- \[\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ donc } \lim_{x \to +\infty} \ln \left(1 + \frac{1}{x} \right) = \ln 1 = 0. \]

Par produit, \[\lim_{x \to +\infty} \frac{1}{x} \ln \left(1 + \frac{1}{x} \right) = 0. \]

Finalement,

\[\lim_{x \to +\infty} \varphi(x) = 0. \]

2 a. Nous avons, pour \(n \) fixé :

- \[\lim_{x \to +\infty} (2x - 2) = +\infty; \]
- \[\lim_{x \to +\infty} \ln \left(x^2 + 1 \right) = +\infty \text{ donc } \lim_{x \to +\infty} \frac{\ln (x^2 + 1)}{n} = +\infty \text{ (car } n > 0). \]

Ainsi, par somme,

\[\lim_{x \to +\infty} f_n(x) = +\infty. \]

b. La dérivée de \(x \mapsto \ln \left(x^2 + 1 \right) \) (fonction de la forme \(\ln u \)) est la fonction \(x \mapsto \frac{2x}{x^2 + 1} \).

Ainsi,

\[f_n'(x) = 2 + \frac{2x}{n(x^2 + 1)}. \]

c. De la question précédente, on peut déduire que pour tout entier naturel \(n \),

\[f_n'(x) > 0. \]

D'où le tableau de variations suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>+\infty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_n(x))</td>
<td>-2</td>
<td>+\infty</td>
</tr>
</tbody>
</table>

- \(f_n(0) = 2 \times 0 - 2 + \frac{\ln(0^2 + 1)}{n} = -2. \)

\[d. \] La fonction \(f_n \) est continue et strictement croissante sur \([0; +\infty[.\]

De plus, « 0 » est une valeur intermédiaire entre \(f_n(0) = -2 \) et \(\lim_{x \to +\infty} f_n(x) \).

Ainsi, d'après le corollaire du théorème des valeurs intermédiaires (théorème de la bijection), l’équation \(f_n(x) = 0 \) admet une unique solution, que l’on notera \(\alpha_n \) (pour renforcer le fait que cette valeur dépend du nombre \(n \)), sur \([0; +\infty[.\]
e. \(f_n(1) = 2 \times 1 - 2 + \frac{\ln(1^2 + 1)}{n} = \frac{\ln 2}{n} > 0 \). Donc « 0 » est une valeur intermédiaire entre \(f_n(0) \) et \(f_n(1) \).
Ainsi, \(\alpha_n \in]0 ; 1[\).

3 D’après la question précédente,
\[
\begin{align*}
f_n(\alpha_n) &= 0 \\
\Leftrightarrow 2\alpha_n - 2 + \frac{\ln(\alpha_n^2 + 1)}{n} &= 0 \\
\Leftrightarrow \frac{\ln(\alpha_n^2 + 1)}{n} &= 2 - 2\alpha_n \\
\Leftrightarrow \ln(\alpha_n^2 + 1) &= 2n(1 - \alpha_n).
\end{align*}
\]
Nous avons :
\[
f_{n+1}(\alpha_n) = 2\alpha_n - 2 + \frac{\ln(\alpha_n^2 + 1)}{n+1}
= 2\alpha_n - 2 + \frac{2n(1 - \alpha_n)}{n+1} \quad (\text{d’après la question précédente})
= -2(1 - \alpha_n) + \frac{2n(1 - \alpha_n)}{n+1}
= (1 - \alpha_n) \left(-2 + \frac{2n}{n+1} \right)
= (1 - \alpha_n) \left(-\frac{2n - 2 + 2n}{n+1} \right)
= \frac{-2(1 - \alpha_n)}{n+1}
\]

Or, \(0 < \alpha_n < 1 \) donc \(1 - \alpha_n > 0 \).
De plus, \(n > 0 \) donc \(-\frac{2(1 - \alpha_n)}{n+1} < 0 \).
Ainsi, \(f_{n+1}(\alpha_n) < 0 \).

4 a. À l’aide de la calculatrice, on trouve :
\[\alpha_1 \approx 0,77 \quad ; \quad \alpha_4 \approx 0,92 \quad ; \quad \alpha_{10} \approx 0,97.\]

b. La fonction \(f_{n+1} \) est strictement croissante sur \(]0 ; 1[\).
De plus, \(f_{n+1}(\alpha_n) < 0 \) donc l’image de \(\alpha_n \) par \(f_{n+1} \) est négative, ce qui signifie que la solution à l’équation \(f_{n+1}(x) = 0 \) est supérieure à \(\alpha_n \).
Ainsi, \(\alpha_{n+1} > \alpha_n \). La suite \((\alpha_n) \) est donc croissante.

c. On sait que \(0 < \alpha_n < 1 \) donc la suite \((\alpha_n) \) est majorée. De plus, elle est croissante.
Or, toute suite croissante et majorée converge.
Donc \((\alpha_n) \) converge.

d.\[\lim_{n \to +\infty} f_n(x) = 2x - 2 \text{ car } \lim_{n \to +\infty} \frac{\ln(x^2 + 1)}{n} = 0.\]
Or, \(\alpha_n \) représente la solution unique à l’équation \(f_n(x) = 0 \). Donc, si l’on pose \(\ell = \lim_{n \to +\infty} \alpha_n \), alors
\[\lim_{n \to +\infty} f_n(x) = 0 \Rightarrow x = \ell.\]
Or,
\[\lim_{n \to +\infty} f_n(x) = 2x - 2 \]
donc
\[2\ell - 2 = 0 \]
soit
\[\ell = 1. \]
Ainsi, \(\lim_{n \to +\infty} \alpha_n = 1. \)

Corrigé de l’exercice 17.

1. Faisons un bel arbre de probabilités pour nous aider :

\[
\begin{align*}
&\quad \text{A}_0 \quad \frac{2}{3} \quad \text{A}_1 \quad \frac{1}{3} \quad \text{B}_1 \\
&\quad \text{B}_2 \quad \frac{1}{2} \quad \text{A}_2 \quad \frac{2}{3} \quad \text{C}_3 \\
&\quad \text{A}_3 \quad \frac{1}{2} \quad \text{C}_2 \quad 1 - \text{C}_3 \\
&\quad \text{C}_1 \quad 1 - \text{C}_2 \quad 1 - \text{C}_3
\end{align*}
\]

a. \(a_1 = P(A_1) = 0; \) \(b_1 = \frac{1}{2} \) et \(c_1 = \frac{2}{3} \) d’après l’énoncé.
\[a_1 + b_1 + c_1 = 1, \] ce qui est normal car la somme des probabilités d’événements formant une partition de l’univers est toujours égale à 1.
b. À l’instant \(n = 2, \) la puce peut se trouver en A ou C car à l’instant \(n = 1, \) elle se trouve en B ou C uniquement.

On a :
- \(a_2 = P_{B_2} (A_2) \times P_B (B_1) = \frac{1}{3} \times \frac{1}{2} = \frac{1}{6}. \)
- \(b_2 = 0. \)
- \(c_2 = 1 \times \frac{2}{3} + \frac{1}{2} \times \frac{1}{3} = \frac{2}{3} + \frac{1}{6} = \frac{5}{6}. \)

c. Pour \(n = 3, \) la puce se trouve en B ou C.
- \(a_3 = 0. \)
- \(b_3 = \frac{1}{3} \times \frac{1}{6} = \frac{1}{18}. \)
- \(c_3 = \frac{2}{3} + \frac{1}{6} + \frac{1}{9} = \frac{17}{18}. \)

2. a. On s’inspire de ce qui a été fait pour conjecturer que \(a_{2k+1} = 0. \) En effet, pour les rangs impairs, la puce ne peut pas être en A car pour les rangs pairs, elle se trouve en A ou C.

\[b_{2k+1} = P_{A_{2k}} (B_{2k+1}) \times P (A_{2k}) = \frac{1}{3} a_{2k}. \]
\[a_{2k+2} = P_{B_{2k+1}} (A_{2k+2}) \times P (B_{2k+1}) = \frac{1}{2} b_{2k+1}. \]

b. De la question précédente, on déduit :
\[a_{2k+2} = \frac{1}{2} \times \frac{1}{3} a_{2k} = \frac{1}{6} a_{2k}. \]
Donc :

\[
a_{2k} = \frac{1}{6^{2k}} a_{2(k-1)}
\]

\[
= \frac{1}{6^{2(k-2)}} a_{2(k-2)}
\]

\[
= \frac{1}{6^{2(k-3)}} a_{2(k-3)}
\]

\[
= \cdots
\]

\[
= \frac{1}{6^{k} a_{2(k-k)}}
\]

\[
= \frac{1}{6^{k} a_{0}}
\]

\[
a_{2k} = \frac{1}{6^{k}} \quad \text{car } a_{0} = 1.
\]

3. \(a_{n} \leq 10^{-6} \Rightarrow a_{2k} \leq 10^{-6}
\]

\[
\Rightarrow \frac{1}{6^{k}} \leq 10^{-6}
\]

\[
\Rightarrow \ln \frac{1}{6^{k}} \leq \ln 10^{-6}
\]

\[
\Rightarrow k \ln \frac{1}{6} \leq -6 \ln 10
\]

\[
\Rightarrow k \geq \frac{-6 \ln 10}{- \ln 6}
\]

\[
\Rightarrow k \geq 8
\]

\[
\Rightarrow n \geq 4
\]

Le plus petit entier \(n\) tel que \(a_n \leq 10^{-6}\) est donc \(n = 4\).

4. \(\lim_{k \to +\infty} a_{2k} = \lim_{k \to +\infty} \frac{1}{6^{k}} = 0.
\)

Donc \((a_n)\) converge vers 0.

Corrigé de l'exercice 18.

1. \(e^{x} = \frac{1}{x} \iff e^{-x} = x
\]

\[
\iff x - e^{-x} = 0
\]

Ainsi, \(x\) est solution de \((E)\) si et seulement si \(f(x) = 0\).

2. a. \(f'(x) = 1 + e^{-x} > 0\) car une exponentielle est toujours strictement positive.

Ainsi, \(f\) est strictement croissante sur \(\mathbb{R}\).

b. \(\lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} e^{x} = +\infty\) donc \(\lim_{x \to -\infty} (-e^{-x}) = -\infty\);

par somme, \(\lim_{x \to -\infty} f(x) = -\infty < 0\);

\(\lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} e^{x} = 0\) donc \(\lim_{x \to +\infty} f(x) = +\infty > 0\);

\(f\) est continue et strictement croissante sur \(\mathbb{R}\).

Par conséquent, d'après le corollaire du théorème des valeurs intermédiaires (théorème de la bijection), il existe une unique valeur \(\alpha\) sur \(\mathbb{R}\) telle que \(f(\alpha) = 0\).

c. \(f\left(\frac{1}{2}\right) = \frac{1}{2} - e^{-\frac{1}{2}} \approx -0,12\) et \(f(1) = 1 - e^{-1} \approx 0,63 > 0\) donc \(\alpha \in \left[\frac{1}{2} ; 1\right]\).
d. La fonction \(f \) est strictement croissante sur \([0; \alpha]\) et \(\alpha \in \left[\frac{1}{2}; 1\right] \) donc \(f(x) < 0 \) sur \([0; \alpha]\).

3. \[g(x) = x \iff \frac{1 + x}{1 + e^x} = x \]
 \[\iff 1 + x = x(1 + e^x) \]
 \[\iff 1 + x = x + xe^x \]
 \[\iff 1 = xe^x \]
 \[\iff \frac{1}{e^x} = x \]
 \[\iff x - \frac{1}{e^x} = 0 \]
 \[\iff x - e^{-x} = 0 \]
 \[\iff f(x) = 0 \]

4. \(\alpha \) est l’unique solution de l’équation \(f(x) = 0 \), donc l’unique solution de l’équation \(g(x) = x \) car les deux équations sont équivalentes.

5. \[g'(x) = \frac{1 \times (1 + e^x) - (1 + x) \times e^x}{(1 + e^x)^2} \]
 \[= \frac{1 + e^x - e^x - xe^x}{(1 + e^x)^2} \]
 \[= \frac{1 - xe^x}{(1 + e^x)^2} \]

Ainsi, \(g'(x) > 0 \iff 1 - xe^x > 0 \) car \((1 + e^x)^2 > 0\) pour tout réel \(x \).

Or,

\[1 - xe^x > 0 \iff 1 > xe^x \]
\[\iff \frac{1}{e^x} > x \]
\[\iff x - e^{-x} < 0 \]
\[\iff f(x) < 0 \]
\[\iff x \in [0; \alpha] \]

Ainsi, \(g \) est croissante sur \([0; \alpha]\).

6. • \(u_0 = 0 \) et \(u_1 = g(u_0) = g(0) = \frac{1}{2} \) donc \(0 \leq u_0 \leq u_1 \leq \alpha \).
 L’initialisation est faite.

• Supposons que pour un entier \(n \) donné, \(0 \leq u_n \leq u_{n+1} \leq \alpha \).
 Comme \(g \) est croissante sur \([0; \alpha]\), alors,
 \[g(0) \leq g(u_n) \leq g(u_{n+1}) \leq g(\alpha) \]
 soit :
 \[\frac{1}{2} \leq u_{n+1} \leq u_{n+2} \leq \alpha \]

car \(g(\alpha) = \alpha \) d’après la question 4.

Comme \(0 < \frac{1}{2} \), on a bien :

\[0 \leq u_{n+1} \leq u_{n+2} \leq \alpha \]
L’hérédité est alors vérifiée ; par conséquent, pour tout entier naturel n,

$$0 \leq u_n \leq u_{n+1} \leq \alpha.$$

7 De la question précédente, on déduit que (u_n) est croissante et majorée. Or, toute suite croissante et majorée converge.
Donc, (u_n) converge.

8 De l’égalité $u_{n+1} = g(u_n)$, on déduit :

$$\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} g(u_n)$$

$$\ell = g \left(\lim_{n \to +\infty} u_n \right) \quad \text{car } g \text{ est continue}$$

$$\ell = g(\ell)$$

Ainsi, ℓ est solution de l’équation $g(x) = x$. Or, α est l’unique solution de cette équation.
Donc $\lim_{x \to +\infty} u_n = \alpha$.

9 On a :

<table>
<thead>
<tr>
<th>n</th>
<th>u_n</th>
<th>Ainsi, $u_4 \approx 0,567143$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,5663110032</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,567143165</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0,5671432904</td>
<td></td>
</tr>
</tbody>
</table>

Corrigé de l’exercice 19.

1

<table>
<thead>
<tr>
<th>A_0B_2</th>
<th>B_1</th>
<th>A_2</th>
<th>A_1</th>
<th>B_0</th>
</tr>
</thead>
</table>

- $a_1 = \frac{a_0 + b_0}{2} = \frac{1}{2}$
- $b_1 = \frac{a_0 + a_1}{2} = \frac{1}{4}$

- $a_2 = \frac{a_1 + b_1}{2} = \frac{3}{8}$
- $b_2 = \frac{a_1 + a_2}{2} = \frac{7}{16}$

2 On peut s’inspirer de ce qui a été fait à la question précédente pour écrire :

$$a_{n+1} = \frac{a_n + b_n}{2} \quad ; \quad b_{n+1} = \frac{a_n + a_{n+1}}{2}$$
3 \[u_{n+1} = a_{n+1} - b_{n+1} \]
\[= \frac{a_n + b_n}{2} - \frac{a_n + a_{n+1}}{2} \]
\[= \frac{b_n - a_{n+1}}{2} \]
\[= \frac{b_n - \frac{a_n + b_n}{2}}{2} \]
\[= \frac{2b_n - a_n - b_n}{4} \]
\[= \frac{b_n - a_n}{4} \]
\[= -\frac{1}{4} \times (a_n - b_n) \]
\[u_{n+1} = -\frac{1}{4} u_n \]

La suite \((u_n)\) est donc géométrique de raison \(q = -\frac{1}{4}\).

4 \[v_{n+1} = 3a_{n+1} + 2b_{n+1} \]
\[= \frac{3a_n + 3b_n}{2} + \frac{2a_n + 2a_{n+1}}{2} \]
\[= \frac{5a_n + 3b_n + 2a_{n+1}}{2} \]
\[= \frac{5a_n + 3b_n + 2a_n + 2b_n}{2} \]
\[= \frac{10a_n + 6b_n + 2a_n + 2b_n}{4} \]
\[= \frac{12a_n + 8b_n}{4} \]
\[= 3a_n + 2b_n \]
\[v_{n+1} = v_n \]

Ainsi, la suite \((v_n)\) est constante.

5 D’après les questions 3 et 4, on a :
\[\begin{cases} u_n = a_n - b_n & L_1 \\ v_n = 3a_n + 2b_n & L_2 \end{cases} \]
soit :
\[\begin{cases} 3u_n - v_n = -5b_n & 3L_1 - L_2 \\ 2u_n + v_n = 5a_n & 2L_1 + L_2 \end{cases} \]
D’où :
\[a_n = \frac{2u_n + v_n}{5} \quad \text{et} \quad b_n = \frac{v_n - 3u_n}{5}. \]

Or, \((u_n)\) est géométrique donc :
\[u_n = u_0 q^n = \left(\frac{-1}{a_0 - b_0}\right) \times \left(-\frac{1}{4}\right)^n. \]

De plus, \((v_n)\) est constante donc :
\[v_n = v_0 = 3a_0 + 2b_0 = 2. \]
On a alors :

\[a_n = \frac{-2 \left(-\frac{1}{4} \right)^n + 2}{5} \quad \text{et} \quad b_n = \frac{2 + 3 \left(-\frac{1}{4} \right)^n}{5}. \]

Or, \(\lim_{n \to +\infty} \left(-\frac{1}{4} \right)^n = 0 \) car \(-1 < -\frac{1}{4} < 1\). Ainsi,

\[\lim_{n \to +\infty} a_n = \frac{2}{5} \quad \text{et} \quad \lim_{n \to +\infty} b_n = \frac{2}{5}. \]

On peut déduire alors que les points \(A_n \) et \(B_n \) se rapprochent de plus en plus du point d’abscisse \(\frac{2}{5} \).

Corrigé de l’exercice 20.

1. \(f \) est dérivable sur \(\mathbb{R}^*_+ \) comme somme de deux fonctions dérivables sur cet ensemble. On a :

\[f'(x) = -e^{-x} - \frac{1}{2\sqrt{x}}. \]

Or, \(e^{-x} > 0 \) car une exponentielle est toujours strictement positive, donc \(-e^{-x} < 0 \) et \(-\frac{1}{2\sqrt{x}} < 0 \), donc \(f'(x) < 0 \) sur \(\mathbb{R}^*_+ \).

Ainsi, \(f \) est strictement décroissante sur \(\mathbb{R}^*_+ \).

2. \(f \) est continue sur \(\mathbb{R}^*_+ \). De plus, \(f(0) = 1 \) et \(f(1) = e^{-1} - 1 < 0 \) donc d’après le corollaire du théorème des valeurs intermédiaires (théorème de la bijection), l’équation \(f(x) = 0 \) admet une unique solution sur \(]0 ; 1[\).

3. La formule qui donne l’équation réduite de la tangente en un point d’abscisse \(a \) est :

\[y = f'(a)(x - a) + f(a) \]

ce qui donne ici :

\[y = \left(-e^{-1} - \frac{1}{2} \right)(x - 1) + e^{-1} - 1 \]

\[= \left(-\frac{1}{e} - \frac{1}{2} \right)(x - 1) + \frac{1 - e}{e} \]

\[= -\left(\frac{2 + e}{2e} \right)(x - 1) + \frac{1 - e}{e} \]

\[= -\left(\frac{2 + e}{2e} \right)x + \frac{2 + e}{2e} + \frac{2 - 2e}{2e} \]

\[y = -\left(\frac{2 + e}{2e} \right)x + \frac{4 - e}{2e} \]

4. L’abscisse du point d’intersection de \((T_0)\) et de l’axe des abscisses se trouve en résolvant l’équation :

\[-\left(\frac{2 + e}{2e} \right)x_1 + \frac{4 - e}{2e} = 0 \]

\[\iff -\left(\frac{2 + e}{2e} \right)x_1 = -\frac{4 - e}{2e} \]

\[\iff x_1 = \frac{4 - e}{2 + e} \]

\[\iff x_1 = \frac{4 - e}{2 + e} \]

112
a. Sur \mathbb{R}_+^*, $e^{-x} < 0$ et $-\frac{1}{2\sqrt{x}} < 0$ donc $f'(x) < 0$ soit, en particulier, $f'(x) \neq 0$.

b. Par définition, on a :

\[(T_n) : y = f'(x_n)(x - x_n) + f(x_n)\]

et en remplaçant x par x_{n+1}, par définition toujours, on doit obtenir 0 :

\[f'(x_n)(x_{n+1} - x_n) + f(x_n) = 0\]

d'où :

\[f'(x_n)(x_{n+1} - x_n) = -f(x_n)\]

\[\Leftrightarrow x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)} (\text{car } f'(x_n) \neq 0)\]

\[\Leftrightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]

6 a. On a le tableau complété suivant :

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.271649346</td>
<td>0.411662333</td>
<td>0.426183639</td>
<td>0.426302743</td>
<td>0.426302751</td>
</tr>
</tbody>
</table>

b. La valeur affichée par cet algorithme correspond à x_5.

c. Dans la mesure où les différentes valeurs de x calculées dans la boucle de l'algorithme correspondent aux termes successifs de la suite $(x_n)_{n \geq 0}$, on peut conjecturer que $\lim_{n \to +\infty} x_n \approx 0,426303$.

7 \mathcal{C} est au-dessus de (T_0) donc $x_1 < \alpha$.

Dans un cas général, le point d'intersection de la tangente à une courbe \mathcal{C}_f (toujours située au-dessus de ses tangentes) et de l’axe des abscisses sera toujours avant la solution de l’équation $f(x) = 0$.

Donc, $x_n \leq \alpha$ pour tout entier naturel n.

8 Par définition, $x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)}$.

Or, $f(x) \geq 0$ sur $]0;\alpha]$ (d’après les variations de f) et $f'(x) < 0$ sur ce même intervalle. Par conséquent, $x_{n+1} - x_n \geq 0$, soit $(x_n)_{n \geq 0}$ croissante sur $]0;\alpha]$.

Or, la suite est majorée par α, donc elle converge. Notons ℓ sa limite. Alors, la relation :

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]

devient (car f et f' sont continues sur $]0;\alpha]$) :

\[\ell = \ell - \frac{f(\ell)}{f'(\ell)}\]

soit :

\[f(\ell) = 0\]

Or, l’unique solution de l’équation $f(x) = 0$ sur $]0;\alpha]$ est α.

Donc la limite de $(x_n)_{n \geq 0}$ est α.

113
Corrigé de l’exercice 21.

1. a. Pour calculer u_2, on prend en compte que l’allongement est homogène ; ainsi, quand Léo est à 1 mètre du point de départ, quand on tire l’élastique pour faire passer sa longueur de 100 mètres à 200 mètres, on la multiplie par 2 donc on doit faire de même pour la longueur qui sépare Léo du point de départ. Par conséquent, après l’allongement, Léo se trouve à $1 \times 2 = 2$ mètres du point de départ. Il suffit ensuite d’ajouter 1 mètre et on obtient $u_2 = 3$.

b. Sur ce même principe, on calcule u_3 : quand on allonge l’élastique de sorte à ce que sa longueur passe de 200 mètres à 300 mètres, on la multiplie par $\frac{300}{200} = 1,5$. Pour obtenir la valeur de u_3, on multiplie donc u_2 par 1,5 puis on ajoute 1 :

$$u_3 = 1,5u_2 + 1 = 1,5 \times 3 + 1 = 5,5.$$

2. Selon le même principe que précédemment, pour calculer u_{n+1} connaissant u_n, il faut trouver le « coefficient d’allongement ». Notons ℓ_n la longueur de l’élastique, en mètre, à l’étape n (avant l’allongement).

Ainsi, $\ell_1 = 100$, $\ell_2 = 200$ et par extension, $\ell_n = 100n$.

Le « coefficient d’allongement » est donc $k_n = \frac{100(n+1)}{100n} = 1 + \frac{1}{n}$.

Ainsi,

$$u_{n+1} = \left(1 + \frac{1}{n}\right) u_n + 1.$$

3. $u_3 = 5,5$ et $\ell_3 = 300$ donc $p_3 = \frac{u_3}{\ell_3} \times 100 = \frac{11}{6} = 1 + \frac{1}{2} + \frac{1}{3}$.

4. Montrons par récurrence la formule proposée.

- Initialisation : nous l’avons montré pour $n = 1$, $n = 2$ et $n = 3$.
- Hérédité : supposons que pour un entier $k > 0$, $p_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

Quand on allonge l’élastique de 100 mètres, le pourcentage ne change pas car l’allongement est homogène (conserve les proportions). En ajoutant 1 mètre, proportionnellement à la longueur ℓ_{n+1}, on a ajouté $\frac{1}{n+1}$.

Ainsi, $p_{n+1} = p_n + \frac{1}{n+1} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \frac{1}{n+1}$.

L’hérédité est alors vérifiée. La formule est donc vraie pour tout entier naturel n non nul.

5. Par récurrence :

- $p_2^0 = p_1 = 1 \geq 1 + \frac{0}{2}$;
- $p_2^1 = p_2 = 1 + \frac{1}{2} \geq 1 + \frac{1}{2}$;
- $p_2^2 = p_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \geq 1 + 2 \times \frac{1}{2}$;
 \[\geq \frac{1}{2} + \frac{1}{2} = \frac{1}{2} \]
- $p_2^3 = p_8 = p_4 + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} \geq 1 + 2 \times \frac{1}{2} + \frac{1}{2} = 1 + 3 \times \frac{1}{2}$;
 \[\geq 4 \times \frac{1}{2} = \frac{1}{2} \]

114
On suppose que \(p_{2n-1} \geq 1 + (n-1) \times \frac{1}{2} \).

\[
p_{2n} = p_{2n-1} + \frac{1}{2^{n-1}+1} + \frac{1}{2^{n-1}+2} + \cdots + \frac{1}{2^n}.
\]

Or, \(\frac{1}{2^k+p} \geq \frac{1}{2^{k+1}} \) pour tout entier \(k \) et pour tout entier \(p \) tel que \(1 \leq p \leq k + 1 \).

Ainsi, dans la mesure où il y a \(2(n-1) \) termes dans \(s_n \), \(s_n \geq 2(n-1) \times \frac{1}{2^n} = \frac{1}{2} \).

Par conséquent, \(p_{2n} \geq 1 + (n-1) \times \frac{1}{2} + \frac{1}{2} \), soit \(p_{2n} \geq 1 + n \times \frac{1}{2} \).

L’hérité est vérifiée donc la formule est vraie pour tout entier naturel \(n \).

\[
\lim_{n \to +\infty} \left(1 + \frac{1}{2n} \right) = +\infty \text{ donc d’après le théorème de comparaison des suites, } \lim_{n \to +\infty} p_n = +\infty.
\]

Cela sous-entend donc que le pourcentage de chemin fait par Léo sur l’élastique dépassera 100, ce qui signifie qu’il arrivera au bout de l’élastique.

Cela peut alors surprendre car le procédé ne permet a priori pas de l’envisager. C’est ce que l’on appelle un paradoxe qui peut s’expliquer de la façon suivante : pour \(n \) assez grand, on démontre (pas nous ! mais les grands mathématiciens...) que \(p_n \approx \ln n \) (à une constante près, que l’on appelle la constant \(\text{d’Euler, et que l’on note } \gamma \)) donc si on cherche \(n \) tel que \(p_n \geq 100 \), on cherche \(n \) pour que \(\ln n \geq 100 \), soit \(n \geq e^{100} \). Or, \(e^{100} \approx 2,7 \times 10^{43} \). Alors, même si Léo faisait 1 mètre par seconde, il faudra à peu près \(2,7 \times 10^{43} \) secondes pour qu’il atteigne le bout de l’élastique, ce qui correspond \(8,56 \times 10^{35} \) années... Autant dire jamais!
Trigonométrie

 disponible sur http://www.mathweb.fr

A Exercices d’application du cours
B Exercices de réflexion
C Exercice & corrigé relus avec attention pour éviter les erreurs

22 février 2017

Énoncés

Équations & inéquations

■ Exercice 1. Équations trigonométriques
(Source : ts-trigo-01)

Résoudre dans \(\mathbb{R} \), puis sur \(]-\pi ; \pi[\) les équations suivantes :

1. \(\cos \left(2x + \frac{\pi}{6} \right) = \frac{1}{2} \)
2. \(\sin \left(3x - \frac{\pi}{7} \right) = -\frac{\sqrt{2}}{2} \)
3. \(\cos \left(x + \frac{\pi}{3} \right) = \sin x \)
4. \(\cos \left(2x + \frac{\pi}{4} \right) = \sin \left(x - \frac{\pi}{3} \right) \)

■ Exercice 2. Équations avec changement de variable
(Source : ts-trigo-02)

Résoudre sur \(]-\pi ; \pi[\) les équations suivantes :

1. \(2 \cos^2 x - 3 \cos x + 1 = 0 \)
2. \(2 \sin^2 x + 5 \sin x + 2 = 0 \)
3. a. Développer \(\left(9 - \frac{3}{2} \sqrt{2} \right)^2 \).

b. Résoudre : \(3 \cos^2 x - \left(9 + \frac{3}{2} \sqrt{2} \right) \cos x + \frac{9}{\sqrt{2}} = 0 \).

■ Exercice 3. Inéquations avec changement de variable
(Source : ts-trigo-03)

Résoudre sur \(]-\pi ; \pi[\) les inéquations suivantes en vous aidant des résultats de l’exercice 2 :

1. \(2 \cos^2 x - 3 \cos x + 1 \geq 0 \)
2. \(2 \sin^2 x + 5 \sin x + 2 < 0 \)
3. \(3 \cos^2 x - \left(9 + \frac{3}{\sqrt{2}} \right) \cos x + \frac{9}{\sqrt{2}} \leq 0 \)
Exercice 4. Inéquations trigonométriques
(Source : ts-trigo-04)
Résoudre sur $[-\pi ; \pi]$ les inéquations suivantes :

1. $\cos\left(2x + \frac{\pi}{6}\right) < \frac{1}{2} \quad 2. \sin\left(3x - \frac{\pi}{7}\right) \leq -\frac{\sqrt{2}}{2}$

Limites

Exercice 5. Calcul de limites
(Source : ts-trigo-07)

1. Calculer $\lim_{x \to 0} \frac{\sin(ax)}{\sin(x)}$, $a \in \mathbb{R}$.
2. Calculer $\lim_{x \to 0} \frac{\cos(x) - 1}{\sin^2(x)}$.
3. Calculer $\lim_{x \to 0} \frac{\cos^2(x) - 1}{x}$.
4. a. Montrer que $\frac{1 - \cos(x)}{x^2} = \frac{1}{2} \left(\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}}\right)^2$.
 b. En déduire $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$ puis $\lim_{x \to 0} \frac{1 - \cos\sqrt{x}}{x}$.

Fonctions trigonométriques

Exercice 6. Encadrement de $\cos x$
(Source : ts-trigo-05)

Le but de cet exercice est de démontrer que pour tout réel x, on a :

$$1 - \frac{x^2}{2} \leq \cos x \leq 1 - \frac{x^2}{2} + \frac{x^4}{24}.$$

1. On pose $f(x) = \cos x - 1 + \frac{x^2}{2}$.
 À l’aide des fonctions $f'(x)$ et $f''(x)$, montrer que $f(x) \geq 0$ pour tout réel x.
2. On pose $g(x) = \cos x - 1 + \frac{x^2}{2} - \frac{x^4}{24}$.
 En dérivant quatre fois $g(x)$, montrer que $g(x) \leq 0$ pour tout réel x.
3. Conclure.
4. Application. Donner un encadrement de $\cos \frac{\pi}{5}$.

Exercice 7. Étude de la fonction $x \mapsto \frac{\cos x}{1 + \sin x}$
(Source : ts-trigo-06)

On définit la fonction f par :

$$f(x) = \frac{\cos x}{1 + \sin x}.$$

1. Déterminer le domaine de définition D_f de f.
2. Montrer que f est périodique.
Déterminer $f'(x)$, puis en déduire le sens de variation de f sur $\left[-\frac{\pi}{2} ; \frac{3\pi}{2}\right]$.

Exercice 8. Fonction $x \mapsto \cos^3 x \cos(3x)$
(Source : ts-trigo-08)
On considère la fonction définie sur \mathbb{R} par :

$$f(x) = \cos^3 x \cos(3x).$$

1. Montrer que l’on peut réduire le domaine d’étude de f à l’intervalle $[0 ; \frac{\pi}{2}]$.
2. Déterminer le sens de variation de f sur $\left[0 ; \frac{\pi}{2}\right]$.
3. Résoudre sur $\left[0 ; \frac{\pi}{2}\right]$ l’équation $f(x) = 0$.
4. Dessiner alors la courbe représentative de f sur $\left[-\frac{\pi}{2} ; \frac{3\pi}{2}\right]$.

Exercice 9. Fonction $x \mapsto \sin^3 x \cos(3x)$
(Source : ts-trigo-09)
On considère la fonction définie sur \mathbb{R} par :

$$f(x) = \sin^3 x \cos(3x).$$

1. Montrer que l’on peut réduire le domaine d’étude de f à l’intervalle $[0 ; \frac{\pi}{2}]$.
2. À l’aide de la formule $\cos(2a) = 2\cos^2 a - 1 = 1 - 2\sin^2 a$, déterminer une valeur exacte de $\cos\frac{\pi}{8}$ et de $\sin\frac{\pi}{8}$.
3. Montrer que $\sqrt{3 - 2\sqrt{2}} = \sqrt{2} - 1$.
4. Déterminer le sens de variation de f sur $\left[0 ; \frac{\pi}{2}\right]$ puis dresser le tableau de variation de f sur $\left[0 ; \frac{\pi}{2}\right]$ en indiquant la valeur exacte de $f\left(\frac{\pi}{8}\right)$.
 On admettra que $f\left(\frac{3\pi}{8}\right) = \frac{-3 - 2\sqrt{2}}{8}$.
5. Résoudre sur $\left[0 ; \frac{\pi}{2}\right]$ l’équation $f(x) = 0$.
6. Dessiner alors la courbe représentative de f sur $\left[-\frac{\pi}{2} ; \frac{\pi}{2}\right]$.
Exercice 10. D’après un sujet de bac, Nouvelle Calédonie 2005
(Source : ts-trigo-10)

Un lapin désire traverser une route de 4 mètres de largeur. Un camion, occupant toute la route, arrive à sa rencontre à la vitesse de 60 km/h. Le lapin décide au dernier moment de traverser, alors que le camion n’est plus qu’à 7 mètres de lui. Son démarrage est foudroyant et on suppose qu’il effectue la traversée en ligne droite au maximum de ses possibilités, c’est-à-dire à 30 km/h. L’avant du camion est représenté par le segment [CC’] sur le schéma page suivante.

Le lapin part du point A en direction de D. Cette direction est repérée par l’angle $\theta = \widehat{BAD}$ avec $0 \leq \theta \leq \frac{\pi}{2}$ (en radians).

1. Déterminer les distances AD et CD en fonction de θ et les temps t_1 et t_2 mis par le lapin et le camion pour parcourir respectivement les distances AD et CD.

2. On pose $f(\theta) = \frac{7}{2} + 2 \tan \theta - \frac{4}{\cos \theta}$.
 Montrer que le lapin aura traversé la route avant le passage du camion si et seulement si $f(\theta) > 0$.

3. Étudier la fonction f sur l’intervalle $\left[0 ; \frac{\pi}{2}\right]$. Conclure.
Corrigé de l'exercice 1.

1. \(\cos \left(2x + \frac{\pi}{6} \right) = \frac{1}{2} \iff \cos \left(2x + \frac{\pi}{6} \right) = \cos \left(\frac{\pi}{3} \right) \)

\[\iff \begin{cases}
2x + \frac{\pi}{6} = \frac{\pi}{3} + 2k\pi \\
2x + \frac{\pi}{6} = -\frac{\pi}{3} + 2k\pi
\end{cases} \quad k \in \mathbb{Z} \]

\[\iff \begin{cases}
2x = \frac{\pi}{3} - \frac{\pi}{6} + 2k\pi \\
2x = -\frac{\pi}{3} - \frac{\pi}{6} + 2k\pi
\end{cases} \quad k \in \mathbb{Z} \]

\[\iff \begin{cases}
x = \frac{\pi}{12} + k\pi \\
x = -\frac{\pi}{4} + k\pi
\end{cases} \quad k \in \mathbb{Z} \]

Sur \([-\pi ; \pi] \), les solutions sont donc :

- \(\frac{\pi}{12} \)
- \(\frac{\pi}{12} - \pi = -\frac{11\pi}{12} \)
- \(-\frac{\pi}{4} \)
- \(-\frac{\pi}{4} + \pi = \frac{3\pi}{4} \)

\[S = \left\{ -\frac{11\pi}{12} ; -\frac{\pi}{4} ; \frac{\pi}{12} ; \frac{3\pi}{4} \right\} \]
2 \sin \left(3x - \frac{\pi}{7}\right) = -\frac{\sqrt{2}}{2} \iff \sin \left(3x - \frac{\pi}{7}\right) = \sin \left(-\frac{\pi}{4}\right)
\iff \begin{cases} 3x - \frac{\pi}{7} = -\frac{\pi}{4} + 2k\pi \\
3x - \frac{\pi}{7} = \pi - \left(-\frac{\pi}{4}\right) + 2k\pi
\end{cases} \quad k \in \mathbb{Z}
\iff \begin{cases} 3x = -\frac{\pi}{4} + \frac{\pi}{7} + 2k\pi \\
3x = \frac{5\pi}{4} + \frac{\pi}{7} + 2k\pi
\end{cases} \quad k \in \mathbb{Z}
\iff \begin{cases} 3x = -\frac{3\pi}{28} + 2k\pi \\
3x = \frac{39\pi}{28} + 2k\pi
\end{cases} \quad k \in \mathbb{Z}
\iff \begin{cases} x = -\frac{\pi}{28} + \frac{2k\pi}{3} \\
x = \frac{13\pi}{28} + \frac{2k\pi}{3}
\end{cases} \quad k \in \mathbb{Z}

Sur \([-\pi; \pi]\), les solutions sont donc :
- \frac{\pi}{28}, -\frac{\pi}{28} + \frac{2\pi}{3} = -\frac{53\pi}{84}
et
- \frac{\pi}{28} - \frac{2\pi}{3} = -\frac{59\pi}{84}
- \frac{13\pi}{28}, \frac{13\pi}{28} + \frac{2\pi}{3} = -\frac{17\pi}{84}
et
- \frac{13\pi}{28} - \frac{4\pi}{3} = -\frac{73\pi}{84}

\mathcal{S} = \left\{ -\frac{73\pi}{84}; -\frac{59\pi}{84}; -\frac{17\pi}{84}; -\frac{\pi}{28}; \frac{13\pi}{28}; \frac{53\pi}{84} \right\}

3 \cos \left(x + \frac{\pi}{3}\right) = \sin x \iff \cos \left(x + \frac{\pi}{3}\right) = \cos \left(\frac{\pi}{2} - x\right)
\iff \begin{cases} x + \frac{\pi}{3} = \frac{\pi}{2} - x + 2k\pi \\
x + \frac{\pi}{3} = -\frac{\pi}{2} + x + 2k\pi
\end{cases} \quad k \in \mathbb{Z}
\iff \begin{cases} 2x = \frac{\pi}{6} + 2k\pi \\
\frac{\pi}{3} = -\frac{\pi}{2} + 2k\pi \iff \text{impossible}
\end{cases} \quad k \in \mathbb{Z}
\iff x = \frac{\pi}{12} + k\pi, \quad k \in \mathbb{Z}

Sur \([-\pi; \pi]\), \mathcal{S} = \left\{ -\frac{11\pi}{12}; \frac{\pi}{12} \right\}
\[\cos \left(2x + \frac{\pi}{4} \right) = \sin \left(x - \frac{\pi}{3} \right) \iff \cos \left(2x + \frac{\pi}{4} \right) = \cos \left(\frac{\pi}{2} - x + \frac{\pi}{3} \right) \]
\[\iff \cos \left(2x + \frac{\pi}{4} \right) = \cos \left(\frac{5\pi}{6} - x \right) \]
\[\iff \begin{cases} 2x + \frac{\pi}{4} = \frac{5\pi}{6} - x + 2k\pi \\ 2x + \frac{\pi}{4} = -\frac{5\pi}{6} + x + 2k\pi \end{cases} \quad k \in \mathbb{Z} \]
\[\iff \begin{cases} 3x = \frac{5\pi}{6} - \frac{\pi}{4} + 2k\pi \\ x = -\frac{5\pi}{6} - \frac{\pi}{4} + 2k\pi \end{cases} \quad k \in \mathbb{Z} \]
\[\iff \begin{cases} x = \frac{7\pi}{12} + 2k\pi \\ x = -\frac{13\pi}{12} + 2k\pi \end{cases} \quad k \in \mathbb{Z} \]

Sur \([-\pi; \pi]\), \[\mathcal{S} = \left\{ \frac{11\pi}{12} ; \frac{7\pi}{36} ; \frac{31\pi}{36} ; -\frac{17\pi}{36} \right\} \]

Corrigé de l'exercice 2.

1. \[2 \cos^2 x - 3 \cos x + 1 = 0. \]
 Posons \(X = \cos x \). Ainsi, l'équation devient :
 \[2X^2 - 3X + 1 = 0. \]
 Le discriminant du polynôme \(2X^2 - 3X + 1 \) est :
 \[\Delta = 9 - 4 \times 2 \times 1 = 1. \]
 Ce dernier admet donc deux racines :
 \[X_1 = \frac{3 - \sqrt{1}}{4} = \frac{1}{2} \quad \text{et} \quad X_2 = \frac{3 + 1}{4} = 1. \]
 Ainsi,
 \[\cos x_1 = \frac{1}{2} \quad \text{et} \quad \cos x_2 = 1, \]
 donc :
 \[x_1 = \frac{\pi}{3} \text{ ou } x_1 = -\frac{\pi}{3} \quad \text{et} \quad x_2 = 0. \]
 On a alors :
 \[\mathcal{S} = \left\{ -\frac{\pi}{3} ; 0 ; \frac{\pi}{3} \right\} \]

2. \[2 \sin^2 x + 5 \sin x + 2 = 0. \]
 Posons \(X = \sin x \). Ainsi, l'équation devient :
 \[2X^2 + 5X + 2 = 0. \]
Le discriminant du polynôme $2X^2 + 5X + 2$ est :

\[\Delta = 25 - 4 \times 2 \times 2 = 9. \]

Ce dernier admet donc deux racines :

\[X_1 = \frac{-5 - 3}{4} = -2 \quad \text{et} \quad X_2 = \frac{-5 + 3}{4} = -\frac{1}{2}. \]

Ainsi,

\[\sin x_1 = -2 \, (\text{impossible car } -2 < -1) \quad \text{et} \quad \sin x_2 = -\frac{1}{2}, \]

soit :

\[x_2 = -\frac{\pi}{6} \quad \text{ou} \quad x_2 = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}. \]

On a alors :

\[S = \left\{ -\frac{5\pi}{6} ; -\frac{\pi}{6} \right\} \]

3. a. \(\left(9 - \frac{3\sqrt{2}}{2} \right)^2 = 81 - 27\sqrt{2} + \frac{9}{2} = \frac{171 - 54\sqrt{2}}{2} \).

b. \(3 \cos^2 x - \left(9 + \frac{3}{\sqrt{2}} \right) \cos x + \frac{9}{\sqrt{2}} = 0. \)

Posons \(X = \cos x. \) L’équation devient alors :

\[3X^2 - \left(9 + \frac{3}{\sqrt{2}} \right) X + \frac{9}{\sqrt{2}} = 0. \]

Le discriminant du polynôme \(3X^2 - \left(9 + \frac{3}{\sqrt{2}} \right) X + \frac{9}{\sqrt{2}} \) est :

\[\Delta = \left[-3\left(3 + \frac{1}{\sqrt{2}} \right) \right]^2 - 4 \times 3 \times \frac{9}{\sqrt{2}} \]

\[= 9 \left(\frac{19}{2} + \frac{6}{\sqrt{2}} \right) - 108 \]

\[= \frac{171}{2} + \frac{54}{\sqrt{2}} -

\[= \frac{171}{2} + \frac{54}{\sqrt{2}} \]

\[= \frac{171}{2} -

\[= \frac{171}{2} - \frac{54\sqrt{2}}{2} \]

\[= \frac{2}{2} \]

\[= \left(9 - \frac{3}{\sqrt{2}} \right)^2 \text{ d’après la question précédente.} \]

Ce dernier admet donc deux racines :

\[X_1 = \frac{9 + \frac{3}{\sqrt{2}} - \left(9 - \frac{3}{\sqrt{2}} \right)}{6} = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \]

et

\[X_2 = \frac{9 + \frac{3}{\sqrt{2}} + \left(9 - \frac{3}{\sqrt{2}} \right)}{6} = 3. \]

Ainsi,

\[\cos x_1 = \frac{\sqrt{2}}{2} \quad \text{et} \quad \cos x_2 = 3 \, (\text{impossible car } 3 > 1), \]
soit :

\[x_1 = \frac{\pi}{4} \quad \text{ou} \quad x_1 = -\frac{\pi}{4}. \]

Finalement, on a :

\[S = \left\{ -\frac{\pi}{4} ; \frac{\pi}{4} \right\} \]

Corrigé de l’exercice 3.

1. \(2 \cos^2 x - 3 \cos x + 1 \geq 0. \)

D’après l’exercice précédent, le polynôme \(2X^2 - 3X + 1 \) se factorise sous la forme :

\[2(X - 1) \left(X - \frac{1}{2} \right). \]

Ainsi,

\[2 \cos^2 x - 3 \cos x + 1 = 2(\cos x - 1) \left(\cos x - \frac{1}{2} \right). \]

- \(-1 \leq \cos x \leq 1 \) donc \(-2 \leq \cos x - 1 \leq 0 \)
- \(\cos x - \frac{1}{2} > 0 \) \(\iff \) \(\cos x > \frac{1}{2} \)
 \(\iff \) \(x \in \left[-\frac{\pi}{3} ; \frac{\pi}{3} \right] \)

D’où le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\pi)</th>
<th>(-\frac{\pi}{3})</th>
<th>(\frac{\pi}{3})</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos x - 1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(\cos x - \frac{1}{2})</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>(2 \cos^2 x - 3 \cos x + 1)</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

L’ensemble solution de l’inéquation est donc :

\[S = \left[-\pi ; -\frac{\pi}{3} \right] \cup \left[\frac{\pi}{3} ; \pi \right] \]

2. \(2 \sin^2 x + 5 \sin x + 2 < 0. \)

D’après l’exercice précédent,

\[2 \sin^2 x + 5 \sin x + 2 = 2(\sin x + 2) \left(\sin x + \frac{1}{2} \right). \]

- \(-1 \leq \sin x \leq 1 \) donc \(1 \leq \sin x + 2 \leq 3 \)
- \(\sin x + \frac{1}{2} < 0 \) \(\iff \) \(\sin x < -\frac{1}{2} \)
 \(\iff \) \(x \in \left[-\frac{5\pi}{6} ; -\frac{\pi}{6} \right] \)

D’où le tableau suivant :
L’ensemble solution de l’inéquation est donc :

\[S = \left\lfloor -\frac{5\pi}{6}, -\frac{\pi}{6} \right\rfloor \]

3 \(3 \cos^2 x - \left(9 + \frac{3}{\sqrt{2}} \right) \cos x + \frac{9}{\sqrt{2}} \leq 0. \)

D’après l’exercice précédent,

\[P(x) = 3 \cos^2 x - \left(9 + \frac{3}{\sqrt{2}} \right) \cos x + \frac{9}{\sqrt{2}} = 3 \left(\cos x - \frac{\sqrt{2}}{2} \right) (\cos x - 3). \]

- -1 \(\leq \) \(\cos x \leq \) 1 donc -4 \(\leq \) \(\cos x - 3 \leq \) -2
- \(\cos x - \frac{\sqrt{2}}{2} > 0 \iff \cos x > \frac{\sqrt{2}}{2} \iff x \in \left\lfloor -\frac{\pi}{4}, \frac{\pi}{4} \right\rfloor \]

D’où le tableau suivant :

<table>
<thead>
<tr>
<th>x</th>
<th>-(\pi)</th>
<th>-(\frac{\pi}{4})</th>
<th>(\frac{\pi}{4})</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos x - 3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\cos x - \frac{\sqrt{2}}{2})</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(P(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

L’ensemble solution de l’inéquation est donc :

\[S = \left\lfloor -\frac{\pi}{4}, \frac{\pi}{4} \right\rfloor \]
Corrigé de l’exercice 4.

1. $\cos \left(2x + \frac{\pi}{6}\right) < \frac{1}{2} \iff \begin{cases} -\pi < 2x + \frac{\pi}{6} < -\frac{\pi}{3} \\ \text{ou} \\ \frac{\pi}{3} < 2x + \frac{\pi}{6} < \pi \end{cases}$

$\iff \begin{cases} -\frac{7\pi}{6} < 2x < -\frac{\pi}{2} \\ \text{ou} \\ \frac{\pi}{6} < 2x < \frac{5\pi}{6} \end{cases}$

$\iff \begin{cases} -\frac{7\pi}{12} < x < -\frac{\pi}{4} \\ \text{ou} \\ \frac{\pi}{12} < x < \frac{5\pi}{12} \end{cases}$

$S = \left[-\frac{7\pi}{12} ; -\frac{\pi}{4}\right] \cup \left[\frac{\pi}{12} ; \frac{5\pi}{12}\right]$

2. $\sin \left(3x - \frac{\pi}{7}\right) \leq -\frac{\sqrt{2}}{2} \iff -\frac{3\pi}{4} \leq 3x - \frac{\pi}{7} \leq -\frac{\pi}{4}$

$\iff -\frac{3\pi}{4} + \frac{\pi}{7} \leq 3x \leq -\frac{\pi}{4} + \frac{\pi}{7}$

$\iff -\frac{17\pi}{28} \leq 3x \leq -\frac{3\pi}{28}$

$\iff -\frac{17\pi}{84} \leq x \leq -\frac{\pi}{28}$

$S = \left[-\frac{17\pi}{84} ; -\frac{\pi}{28}\right]$

Corrigé de l’exercice 5.

1. Ici, nous avons une forme indéterminée du type $\frac{0}{0}$ donc nous allons passer par la notion de taux d’accroissement.

Posons $f(x) = \sin(ax)$ et $g(x) = \sin x$.

Alors, $f'(x) = a \cos(ax)$ donc $f'(0) = a$, et $g'(x) = \cos x$ donc $g'(0) = 1$.

126
De plus, \(f(0) = g(0) = 0 \) et, pour tout \(x \) différent de 0, on a :
\[
\frac{\sin(ax)}{\sin x} = \frac{f(x) - f(0)}{x - 0} \times \frac{x - 0}{g(x) - g(0)}.
\]

Ainsi,
\[
\lim_{x \to 0} \frac{\sin(ax)}{\sin x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} \times \frac{x - 0}{g(x) - g(0)}.
\]

Or,
\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) \quad \text{et} \quad \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = g'(0) \quad \text{donc} \quad \lim_{x \to 0} \frac{x - 0}{g(x) - g(0)} = \frac{1}{g'(0)}.
\]

Ainsi,
\[
\lim_{x \to 0} \frac{\sin(ax)}{\sin x} = f'(0) \times \frac{1}{g'(0)}
\]

N.B. On aurait aussi pu écrire :
\[
\frac{\sin(ax)}{\sin x} = a \times \frac{\sin(ax)}{ax} \times \frac{x}{\sin x}
\]
et utiliser la propriété du cours : \(\lim_{X \to 0} \frac{\sin X}{X} = 1. \)

2 On sait que \(\cos^2 x + \sin^2 x = 1 \) donc \(\sin^2 x = 1 - \cos^2 x. \)
Ainsi,
\[
\frac{\cos x - 1}{\sin^2 x} = \frac{\cos x - 1}{1 - \cos^2 x} = \frac{\cos x - 1}{(1 - \cos x)(1 + \cos x)} = -\frac{1}{1 + \cos x} \quad \text{pour} \quad x \neq 0 + 2k\pi, \ k \in \mathbb{Z}.
\]

Ainsi, \(\lim_{x \to 0} \frac{\cos x - 1}{\sin^2 x} = \lim_{x \to 0} \frac{1}{1 + \cos x} = -\frac{1}{2}. \)

3 On a :
\[
\frac{\cos^2 x - 1}{x} = \frac{(\cos x - 1)(\cos x + 1)}{x} = \frac{\cos x - 1}{x} \times (\cos x + 1)
\]

Or, d'après le cours, \(\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \) donc \(\lim_{x \to 0} \frac{\cos^2 x - 1}{x} \times (\cos x + 1) = 0 \times (\cos 0 + 1) = 0. \)
4 a. \[
\frac{1}{2} \left(\sin^2 \frac{x}{2} \right) = \frac{1}{2} \times \frac{\sin^2 \frac{x}{2}}{x^2}
\]
\[
= \frac{1}{2} \times 4 \times \frac{1 - \cos^2 \frac{x}{2}}{x^2}
\]
\[
= 2 - 2 \cos^2 \frac{x}{2}
\]
\[
= \frac{1 + \left(1 - 2 \cos^2 \frac{x}{2} \right)}{x^2}
\]
\[
= \frac{1 + \left(-\cos \left(2 \times \frac{x}{2} \right) \right)}{x^2} \quad \text{car } \cos(2a) = 2\cos^2 a - 1
\]
\[
\frac{1}{2} \left(\sin^2 \frac{x}{2} \right) = \frac{1 - \cos x}{x^2}
\]

b. On sait que \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \) donc \(\lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} = 1 \). On a alors \(\lim_{x \to 0} \left[\frac{1}{2} \left(\sin \frac{x}{2} \right)^2 \right] = \frac{1}{2} \)
d'où :
\[
\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}
\]

De plus, \(\lim_{x \to 0} \frac{1 - \cos \sqrt{x}}{x} = \lim_{x \to 0} \frac{1 - \cos X}{X^2} \) (en posant \(X = \sqrt{x} \)).

D’après ce qui précède, on obtient alors :
\[
\lim_{x \to 0} \frac{1 - \cos \sqrt{x}}{x} = \frac{1}{2}
\]

Corrigé de l’exercice 6.

1 \(f(x) = \cos x - 1 + \frac{x^2}{2} \) donc \(f'(x) = -\sin x + x \) et \(f''(x) = -\cos x + 1 \).
On sait que pour tout réel \(x \), \(-1 \leq \cos x \leq 1 \) donc \(0 \leq f''(x) \leq 2 \). Autrement dit, \(f''(x) \geq 0 \) donc \(f' \) est strictement croissante sur \(\mathbb{R} \).
De plus, \(f'(0) = 0 \) donc \(f'(x) \geq 0 \) sur \(\mathbb{R} \). Par conséquent, \(f \) est strictement croissante sur \(\mathbb{R} \). Or, \(f(0) = 0 \) donc on en déduit que \(f(x) \geq 0 \) sur \(\mathbb{R} \).

2 \(g(x) = \cos x - 1 + \frac{x^2}{2} - \frac{x^4}{24} \) donc \(g'(x) = -\sin x + x - \frac{x^3}{6} \), \(g''(x) = -\cos x + 1 - \frac{x^2}{2} \), \(g'''(x) = \sin x - x \) et \(g''''(x) = \cos x - 1 \).
On a alors \(g^{(4)}(x) \leq 0 \) sur \(\mathbb{R} \), donc \(g^{(3)}(x) \) est strictement décroissante sur \(\mathbb{R} \). Or, \(g^{(3)}(0) = 0 \) donc \(g^{(3)}(x) \leq 0 \) sur \(\mathbb{R} \).
On en déduit que \(g'' \) est décroissante sur \(\mathbb{R} \). Or, \(g''(0) = 0 \) donc \(g''(x) \leq 0 \) sur \(\mathbb{R} \), ce qui implique que \(g' \) est décroissante sur \(\mathbb{R} \). Or, \(g'(0) = 0 \) donc \(g'(x) \leq 0 \) sur \(\mathbb{R} \), donc \(g \) est décroissante sur \(\mathbb{R} \). Or, \(g(0) = 0 \) donc \(g(x) \leq 0 \) sur \(\mathbb{R} \).

3 De la question 1 on déduit que pour tout réel \(x \) :
\[
\cos x - 1 + \frac{x^2}{2} \geq 0 \iff \cos x \geq 1 + \frac{x^2}{2}.
\]
De la question 2 on déduit que pour tout réel \(x \) :
\[
\cos x - 1 + \frac{x^2}{2} - \frac{x^4}{24} \leq 0 \iff \cos x \leq 1 + \frac{x^2}{2} + \frac{x^4}{24}.
\]
Ainsi,
\[
\frac{1 - x^2}{2} \leq \cos x \leq 1 - \frac{x^2}{2} + \frac{x^4}{24}
\]
Si \(x = \frac{\pi}{5} \), alors :
\[
1 - \frac{\pi^2}{50} \leq \cos \frac{\pi}{5} \leq 1 - \frac{\pi^2}{50} + \frac{\pi^4}{15\,000}
\]

N.B. On remarque que \(\frac{\pi^4}{15\,000} \) est très proche de 0 (à peu près égal à 0,006), ce qui nous permet de dire que \(\cos \frac{\pi}{5} \approx 1 - \frac{\pi^2}{50} \) (au centième près).
En effet, \(1 - \frac{\pi^2}{50} \approx 0,00803 \) et \(\cos \frac{\pi}{5} \approx 0,809 \). On a bien une erreur de 0,006.

Corrigé de l'exercice 7.
1. \(f(x) \) est défini quand \(1 + \sin x \neq 0 \).
 Or, \(1 + \sin x = 0 \iff \sin x = -1 \iff x = -\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z} \).
 Ainsi, le domaine de définition de \(f \) est \(\mathcal{D}_f = \mathbb{R} \setminus \left\{ -\frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z} \right\} \).
2. On sait que \(\cos(x + 2\pi) = \cos x \) et \(\sin(x + 2\pi) = \sin x \). Par conséquent, \(f(x + 2\pi) = f(x) \).
 Ainsi, \(f \) est \(2\pi \)-périodique.
3. \(f \) est de la forme \(\frac{u}{v} \), avec \(u(x) = \cos x \) et \(v(x) = 1 + \sin x \).
 Ainsi, \(f' \) est de la forme \(\frac{u'v - uv'}{v^2} \), avec \(u'(x) = -\sin x \) et \(v'(x) = \cos x \).
 \[
f'(x) = -\sin x(1 + \sin x) - \cos^2 x
 = -\sin x - \sin^2 x - \cos^2 x
 = -\sin x - (\sin^2 x + \cos^2 x)
 = -\sin x
 = -\sin x + 1
 = -\frac{\sin x + 1}{(1 + \sin x)^2}
\]
 car \(\cos^2 x + \sin^2 x = 1 \) pour tout réel \(x \).
 Or, pour tout réel \(x \in \left[-\frac{\pi}{2} ; \frac{3\pi}{2} \right], -1 \leq \sin x \leq 1 \) donc \(0 \leq \sin x + 1 \leq 2 \). De plus, \((1 + \sin x)^2 > 0 \) donc \(f'(x) < 0 \) sur \(\left[-\frac{\pi}{2} ; \frac{3\pi}{2} \right] \).
 Ainsi, \(f \) est strictement décroissante sur \(\left[-\frac{\pi}{2} ; \frac{3\pi}{2} \right] \).
Corrigé de l’exercice 8.

1. Montrons d’abord que f est π-périodique.

\[
\begin{align*}
 f(x + \pi) &= \left[\cos(x + \pi) \right]^3 \cos(3(x + \pi)) \\
 &= \left[-\cos x \right]^3 \cos(3x + 3\pi) \\
 &= -\cos^3 x \cos(3x + \pi) \\
 &= -\cos^3 x \left(-\cos(3x) \right) \\
 &= \cos^3 x \cos(3x)
\end{align*}
\]

Donc f est π-périodique.

On peut donc réduire l’intervalle d’étude à un intervalle d’amplitude π, par exemple $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$.

2. Montrons que f est paire. D’abord, le domaine de définition de f est centré en 0. De plus,

\[
\begin{align*}
 f(-x) &= \left[\cos(-x) \right]^3 \cos(-3x) \\
 &= \left[\cos x \right]^3 \cos(3x) \\
 &= \cos^3 x \cos(3x)
\end{align*}
\]

Donc f est paire.

On peut donc réduire le domaine d’étude à la moitié du précédent, donc à $\left[0, \frac{\pi}{2} \right]$ par exemple.

N.B. On aurait aussi pu prendre $\left[-\frac{\pi}{2}, 0 \right]$.

2. f est de la forme uv avec $u(x) = \cos^3 x$ et $v(x) = \cos(3x)$.

Ainsi, $f' = u'v + uv'$ avec $u'(x) = 3 \times (-\sin x) \times \cos^2 x = -3 \sin x \cos^2 x$ et $v'(x) = -3 \cos(3x)$.

\[
\begin{align*}
 f'(x) &= -3 \sin x \cos^2 x \cos(3x) - 3 \cos^3 x \sin(3x) \\
 &= -3 \cos^2 x \left[\sin x \cos(3x) + \cos x \sin(3x) \right] \\
 &= -3 \cos^2 x \sin(x + 3x) \quad \text{d’après la formule } \sin(a + b) = \sin a \cos b + \sin b \cos a
\end{align*}
\]

\[
\begin{align*}
 f'(x) &= -3 \cos^2 x \sin(4x) \\
 \forall x \in \left[0, \frac{\pi}{2} \right], \quad -3 \cos^2 x \leq 0.
\end{align*}
\]

De plus, $\sin(4x) > 0 \iff 0 + 2k\pi < 4x < \pi + 2k\pi \iff \frac{k\pi}{2} < x < \frac{\pi}{4} + \frac{k\pi}{2}$.

130
Ainsi, sur \([0; \frac{\pi}{2}] \), on a :

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(\frac{\pi}{4})</th>
<th>(\frac{\pi}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>(-\frac{1}{4})</td>
<td>0</td>
<td>+ 0</td>
</tr>
<tr>
<td>(f(x))</td>
<td>1</td>
<td>(-\frac{1}{4})</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
f \left(\frac{\pi}{4} \right) = \left(\cos \frac{\pi}{4} \right)^3 \cos \frac{3\pi}{4}
\]
\[
= \left(\frac{\sqrt{2}}{2} \right)^3 \left(-\frac{\sqrt{2}}{2} \right)
\]
\[
= \frac{2\sqrt{2}}{8} \times \left(-\frac{\sqrt{2}}{2} \right)
\]
\[
= - \frac{4}{16}
\]
\[
= - \frac{1}{4}
\]

3. \(f(x) = 0 \iff \cos^3 x = 0 \) ou \(\cos(3x) = 0 \)
 \[
 \iff \cos x = 0 \) ou \(\cos(3x) = 0 \)
 \[
 \iff x = \frac{\pi}{2} + 2k\pi \) ou \(3x = \frac{\pi}{2} + 2k\pi, \) \(k \in \mathbb{Z} \)
 \[
 \iff x = \frac{\pi}{2} + 2k\pi \) ou \(x = \frac{\pi}{6} + \frac{2k\pi}{3}, \) \(k \in \mathbb{Z} \)
Ainsi, sur \([0; \frac{\pi}{2}] \), \(f(x) = 0 \iff x = \frac{\pi}{2} \) ou \(x = \frac{\pi}{6}. \)

4. La courbe représentative de \(f \) est donnée ci-dessous :

- **Corrigé de l’exercice 9.**
 1. Montrons d’abord que \(f \) est \(\pi \)-périodique.

\[
f(x + \pi) = \left[\sin(x + \pi) \right]^3 \cos \left[3(x + \pi) \right]
\]
\[
= \left[-\sin x \right]^3 \cos(3x + 3\pi)
\]
\[
= -\sin^3 x \cos(3x + \pi)
\]
\[
= -\sin^3 x \left[-\cos(3x) \right]
\]
\[
= \sin^3 x \cos(3x)
\]
\[
f(x + \pi) = f(x)
\]
La fonction \(f \) est donc \(\pi \)-périodique ; on peut donc restreindre l’intervalle d’étude de \(f \) à un intervalle d’amplitude \(\pi \), par exemple \(\left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \).
• Montrons que f est impaire. Le domaine de définition de f est centré en 0. De plus,

$$f(-x) = \left[\sin(-x) \right]^3 \cos(-3x)$$

$$= \left[-\sin x \right]^3 \cos(3x)$$

$$= -\sin^3 x \cos(3x)$$

$$f(-x) = -f(x)$$

La fonction f est donc impaire ; on peut donc réduire l’intervalle d’étude précédent à sa moitié, donc à $\left[0 ; \frac{\pi}{2} \right]$.

2 Remarquons que $2 \times \frac{\pi}{8} = \frac{\pi}{4}$ donc :

$$\cos \left(2 \times \frac{\pi}{8} \right) = 2 \cos^2 \frac{\pi}{8} - 1$$

$$\iff \frac{\sqrt{2}}{2} + 1 = 2 \cos^2 \frac{\pi}{8}$$

$$\iff \cos^2 \frac{\pi}{8} = \frac{1}{2} \left(\frac{\sqrt{2}}{2} + 1 \right)$$

$$\iff \cos \frac{\pi}{8} = \sqrt{\frac{\sqrt{2} + \sqrt{2}}{2}} \quad \text{car } \cos \frac{\pi}{8} > 0.$$

De même,

$$\cos \left(2 \times \frac{\pi}{8} \right) = 1 - 2 \sin^2 \frac{\pi}{8}$$

$$\iff \frac{\sqrt{2}}{2} = 1 - 2 \sin^2 \frac{\pi}{8}$$

$$\iff \sin^2 \frac{\pi}{8} = \frac{1}{2} \left(1 - \frac{\sqrt{2}}{2} \right)$$

$$\iff \sin \frac{\pi}{8} = \sqrt{\frac{\sqrt{2} - \sqrt{2}}{2}} \quad \text{car } \sin \frac{\pi}{8} > 0.$$

3 $\left(\sqrt{2} - 1 \right)^2 = 3 - 2\sqrt{2}$ donc $\sqrt{\left(\sqrt{2} - 1 \right)^2} = \sqrt{3 - 2\sqrt{2}}$, soit $\sqrt{3 - 2\sqrt{2}} = \sqrt{2} - 1$ (car tous ces nombres sont positifs).

4 f est de la forme uw avec $u(x) = \sin^3 x$ et $v(x) = \cos(3x)$.
Donc $f' = u'v + uv'$ avec $u'(x) = 3 \cos x \sin^2 x$ et $v'(x) = -3 \sin(3x)$.
Ainsi,

$$f'(x) = 3 \cos x \sin^2 x \cos(3x) - 3 \sin(3x) \sin^3 x$$

$$= 3 \sin^2 x \left(\cos x \cos(3x) - \sin(3x) \sin x \right)$$

$$f'(x) = 3 \sin^2 x \cos(4x)$$ en utilisant la formule $\cos(a + b) = \cos a \cos b - \sin a \sin b$

$\forall x \in \left[0 ; \frac{\pi}{2} \right]$, $3 \sin^2 x \geq 0$. De plus,

$$\cos(4x) > 0 \iff \frac{\pi}{2} + 2k\pi < 4x < \frac{\pi}{2} + 2k\pi$$

$$\iff \frac{\pi}{8} + k\frac{\pi}{2} < x < \frac{\pi}{8} + k\frac{\pi}{2}$$
Donc sur \([0; \frac{\pi}{2}]\), \(\cos(4x) \geq 0 \iff x \in \left[0; \frac{\pi}{8}\right] \cup \left[\frac{3\pi}{8}; \frac{\pi}{2}\right]\) d'où le tableau suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(\frac{\pi}{8})</th>
<th>(\frac{3\pi}{8})</th>
<th>(\frac{\pi}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(f(x))</td>
<td>(\frac{3 - 2\sqrt{2}}{8})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La courbe représentative de f est donnée ci-dessous :

![Graph of f](image)

Corrigé de l’exercice 10.

1. Le triangle ABD est rectangle en B donc :

$$\begin{align*}
\cos \theta &= \frac{AB}{AD} \iff AD = \frac{4}{\cos \theta} \\
\tan \theta &= \frac{BD}{AB} \iff BD = 4 \tan \theta
\end{align*}$$

On en déduit alors que $CD = 7 + 4 \tan \theta$.

D’après la formule $v = \frac{d}{t}$, on déduit que $t_1 = \frac{AD}{30}$, exprimée en heures. Il est plus judicieux d’exprimer cette durée en minutes en remarquant que :

$$30 \text{ km/h} = 30 \times \frac{1000 \text{ m}}{60 \text{ min}} = 500 \text{ m/min}.$$

Ainsi, $t_1 = \frac{4}{500 \cos \theta}$.

De même, $60 \text{ km/h} = 1000 \text{ m/min}$ donc $t_2 = \frac{7 + 4 \tan \theta}{1000}$.
le lapin aura traversé la route avant le passage du camion si et seulement si \(t_2 > t_1 \), donc si et seulement si \(t_2 - t_1 > 0 \).

\[
t_2 - t_1 = \frac{7 + 4 \tan \theta}{1\,000} - \frac{4}{500 \cos \theta} \\
= \frac{1}{500} \left(\frac{7 + 4 \tan \theta}{2} - \frac{4}{\cos \theta} \right) \\
= \frac{1}{500} \left(\frac{7}{2} + 2 \frac{\sin \theta}{\cos \theta} - \frac{4}{\cos \theta} \right) \\
= \frac{1}{500} \left(\frac{7}{2} + 2 \sin \theta - 4 \right) \\
= \frac{1}{500} \left(\frac{7}{2} + 2 \tan \theta - 4 \right) \\
= \frac{1}{500} \left(\frac{7}{2} + 2 \tan \theta - 4 \cos \theta \right)
\]

\[
f'(\theta) = \frac{2 \cos^2 \theta + \sin \theta (2 \sin \theta - 4)}{\cos^2 \theta} \\
= \frac{2 - 4 \sin \theta}{\cos^2 \theta} \\
= \frac{2(1 - 2 \sin \theta)}{\cos^2 \theta}
\]

Ainsi, \(t_2 - t_1 > 0 \iff f(\theta) > 0 \).

Ainsi, \(f'(\theta) > 0 \iff 1 - 2 \sin \theta > 0 \iff \sin \theta < \frac{1}{2} \iff \theta < \frac{\pi}{6} \).

De plus,

- \(f(0) = \frac{7}{2} - 4 = \frac{1}{2} \);
- \(\lim_{x \to \frac{\pi}{2}} (2 \sin \theta - 4) = -4 \) et \(\lim_{x \to \frac{\pi}{2}} \cos \theta = 0^+ \) donc par quotient, \(\lim_{x \to \frac{\pi}{2}} f(\theta) = -\infty \);
- \(f\left(\frac{\pi}{6}\right) = \frac{7}{2} + \frac{1 - 4 \sqrt{2}}{2} = \frac{7}{2} - \frac{6}{\sqrt{2}} = \frac{7 - 6\sqrt{2}}{2} \approx 0,04 > 0 \).

D'où le tableau suivant :

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0</th>
<th>(\frac{\pi}{6})</th>
<th>(\frac{\pi}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(\theta))</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(f(\theta))</td>
<td>(-\frac{1}{2})</td>
<td>(f\left(\frac{\pi}{6}\right))</td>
<td>(-\infty)</td>
</tr>
</tbody>
</table>

On peut donc conclure que le lapin peut être sauvé si \(\theta \approx \frac{\pi}{6} \).
Exercice 1. Une histoire de QCM, Amérique du Sud 2009
(Source : ts-proba-01)

On considère un questionnaire comportant cinq questions.
Pour chacune des cinq questions posées, trois propositions de réponses sont faites (A, B et C), une seule d’entre elles étant exacte.

Un candidat répond à toutes les questions posées en écrivant un mot réponse de cinq lettres.
Par exemple, le mot « BBAAC » signifie que le candidat a répondu B aux première et deuxième questions, A aux troisième et quatrième questions et C à la cinquième question.

1. a. Combien y-a-t’il de mots-réponses possible à ce questionnaire ?
 b. On suppose que le candidat répond au hasard à chacune des cinq questions de ce questionnaire.
 Calculer la probabilité des évènements suivants :
 E : « le candidat a exactement une réponse exacte ».
 F : « le candidat n’a aucune réponse exacte ».
 G : « le mot-réponse du candidat est un palindrome ». (On précise qu’un palindrome est un mot pouvant se lire indifféremment de gauche à droite ou de droite à gauche : par exemple, « BACAB » est un palindrome).

2. Un professeur décide de soumettre ce questionnaire à ses 28 élèves en leur demandant de répondre au hasard à chacune des cinq questions de ce questionnaire.
 On désigne par 𝑋 le nombre d’élèves dont le mot-réponse ne comporte aucune réponse exacte.
 a. Justifier que la variable aléatoire 𝑋 suit la loi binomiale de paramètres 𝑛 = 28 et
 𝑝 = \frac{32}{243}.
 b. Calculer la probabilité, arrondie à 10⁻², qu’au plus un élève n’ait fourni que des réponses fausses.

Exercice 2. Sacs défectueux, La Réunion 2009
(Source : ts-proba-02)

Une usine produit des sacs. Chaque sac fabriqué peut présenter deux défauts : le défaut a et le défaut b. Un sac est dit défectueux s’il présente au moins l’un des deux défauts.

1. Dans cette question les probabilités demandées seront données avec leurs valeurs décimales exactes.
On prélève un sac au hasard dans la production d’une journée.
On note A l’événement « le sac présente le défaut a » et B l’événement « le sac présente le défaut b ». Les probabilités des événements A et B sont respectivement $P(A) = 0,02$ et $P(B) = 0,01$; on suppose que ces deux événements sont indépendants.

a. Calculer la probabilité de l’événement C « le sac prélevé présente le défaut a et le défaut b ».

b. Calculer la probabilité de l’événement D « le sac est défectueux ».

c. Calculer la probabilité de l’événement E « le sac ne présente aucun défaut ».

d. Sachant que le sac présente le défaut a, quelle est la probabilité qu’il présente aussi le défaut b?

2 On suppose que la probabilité (arrondie au centième) qu’un sac soit défectueux est égale à 0,03.

On prélève au hasard un échantillon de 100 sacs dans la production d’une journée. La production est suffisamment importante pour que l’on assimile ce prélèvement à un tirage avec remise de 100 sacs. On considère la variable aléatoire X qui, à tout prélèvement de 100 sacs, associe le nombre de sacs défectueux.

a. Justifier que la variable aléatoire X suit une loi binomiale dont on précisera les paramètres.

b. Quelle est la probabilité de l’événement « au moins un sac est défectueux »? On arrondira cette probabilité au centième. Interpréter ce résultat.

c. Calculer l’espérance mathématique de la variable aléatoire X.

Interpréter ce résultat dans le cadre de l’énoncé.

Exercice 3. MP3 défectueux, Polynésie 2009

Une entreprise fabrique des lecteurs MP3, dont 6 % sont défectueux.
Chaque lecteur MP3 est soumis à une unité de contrôle dont la fiabilité n’est pas parfaite.
Cette unité de contrôle rejette 98 % des lecteurs MP3 défectueux et 5 % des lecteurs MP3 fonctionnant correctement.

On note :

D l’événement : « le lecteur MP3 est défectueux » ;

R l’événement : « l’unité de contrôle rejette le lecteur MP3 ».

1 Faire un arbre pondéré sur lequel on indiquera les données qui précèdent.

2 a. Calculer la probabilité que le lecteur soit défectueux et ne soit pas rejeté.

b. On dit qu’il y a une erreur de contrôle lorsque le lecteur MP3 est rejeté alors qu’il n’est pas défectueux, ou qu’il n’est pas rejeté alors qu’il est défectueux.

Calculer la probabilité qu’il y ait une erreur de contrôle.

3 Montrer que la probabilité qu’un lecteur MP3 ne soit pas rejeté est égale à 0,8942.

4 Quatre contrôles successifs indépendants sont maintenant réalisés pour savoir si un lecteur MP3 peut être commercialisé.

Un lecteur MP3 est :

- commercialisé avec le logo de l’entreprise s’il subit avec succès les quatre contrôles successifs,
- détruit s’il est rejeté au moins deux fois,
- commercialisé sans le logo sinon.
Le coût de fabrication d’un lecteur MP3 s’élève à 50 €.
Son prix de vente est de 120 € pour un lecteur avec logo et 60 € pour un lecteur sans logo. On désigne par G la variable aléatoire qui, à chaque lecteur MP3 fabriqué, associe le gain algébrique en euros (éventuellement négatif) réalisé par l’entreprise.

a. Déterminer la loi de probabilité de la variable aléatoire G.
b. Calculer à 10^{-2} près l’espérance mathématique de G. Donner une interprétation de ce résultat.

Exercice 4. Une école à trois classes
(Source : ts-proba-04)

Dans une école, il y a 3 classes C_1, C_2, C_3 dont le nombre d’élèves est respectivement 44, 33, 40. Chaque classe a une probabilité de gagner à un jeu respectivement de $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$. Si un élève gagne, quelle est la probabilité qu’il vienne de la classe C_2 ?

Exercice 5. Agence LOCAR
(Source : ts-proba-05)

La petite agence LOCAR loue des voitures à la journée. Elle dispose d’un parc de 16 voitures. Neuf véhicules sont systématiquement loués à des clients réguliers. La loi de probabilité du nombre de voitures louées par jour X est donnée dans le tableau suivant :

<table>
<thead>
<tr>
<th>x_i</th>
<th>$P(X=x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0,05</td>
</tr>
<tr>
<td>11</td>
<td>0,10</td>
</tr>
<tr>
<td>12</td>
<td>0,37</td>
</tr>
<tr>
<td>13</td>
<td>0,27</td>
</tr>
<tr>
<td>14</td>
<td>0,17</td>
</tr>
<tr>
<td>15</td>
<td>0,03</td>
</tr>
<tr>
<td>16</td>
<td>0,01</td>
</tr>
</tbody>
</table>

1. Quelle est la probabilité :
 a. de louer moins de 13 véhicules dans la journée ?
 b. de louer au moins 14 véhicules dans la journée ?

2. Déterminer :
 a. L’espérance du nombre de véhicules loués dans la journée.
 b. L’écart type du nombre de véhicules loués dans la journée.

La location d’un véhicule rapporte en moyenne 40 € par jour de marge sur coûts variables. Il y a des frais fixes d’un montant de 275 € par jour.

3. On appelle B le bénéfice quotidien.
 a. Exprimer B en fonction de X.
 b. En déduire le bénéfice quotidien moyen espéré.
 c. Déterminer l’écart type du bénéfice moyen quotidien en utilisant l’expression du bénéfice en fonction de X.
 d. Quel est le seuil de rentabilité ? Est-il possible que l’agence soit déficitaire ?
Exercice 6. Urne et variable aléatoire
(Source : ts-proba-06)

On considère une urne contenant 3 boules jaunes, 2 bleues, 1 rouge et 4 vertes, toutes indiscernables au toucher. On tire au hasard une boule de l’urne.

1 Calculer la probabilité des événements suivants :
 - J = « tirer une boule jaune »
 - B = « tirer une boule bleue »
 - R = « tirer une boule rouge »
 - V = « tirer une boule verte »

2 En fonction de la couleur tirée, on se voit attribuer une somme d’argent selon la règle suivante :
 - rouge, on gagne 10 €.
 - verte, on gagne 2 €.
 - jaune ou bleue, on gagne 3 €.

Soit X la variable aléatoire qui associe à chaque tirage le gain réalisé.
 - a. Déduire de la question 1 les valeurs de P(X=2), P(X=3) et P(X=10).
 - b. Calculer l’espérance mathématique de X, sa variance et son écart type (à 10⁻² près).

3 Maintenant, on gagne toujours 10 € si la boule tirée est rouge, 2 € si elle est verte mais on gagne 3 € si elle est jaune et m € si elle est bleue, m désignant un réel positif.

Calculer m pour que le gain moyen espéré soit de 4,5 €.

Exercice 7. Urne et fonction rationnelle
(Source : ts-proba-07)

Une urne, notée U₁, contient k boules rouges, k + 1 boules blanches et 2 boules noires, où k est un entier naturel non nul.

Une urne, notée U₂, contient 3 boules rouges, 2 boules blanches et 1 boule noire.

Toutes les boules sont indiscernables au toucher.

Une expérience consiste à tirer au hasard une boule de U₁, à la mettre dans U₂, puis à tirer un boule de U₂.

Pour i = 1 et i = 2, on note :
 - Rᵢ l’événement : « On tire une boule rouge de l’urne Uᵢ. »
 - Bᵢ l’événement : « On tire une boule blanche de l’urne Uᵢ. »
 - Nᵢ l’événement : « On tire une boule noire de l’urne Uᵢ. »
 - D l’événement : « On tire deux boules de couleurs différentes lors de l’expérience. »

1 Compléter l’arbre des probabilités de l’expérience suivant :

2 Montrer que la probabilité de l’événement D est P(D) = \(\frac{k + 2}{2k + 3} \).
On répète l’expérience dans les mêmes conditions n fois, où n est un entier naturel non nul.
On prend $k = 1$.
On note E l’événement : « On tire deux boules de couleurs différentes lors d’au moins une expérience. ».
Déterminer le plus petit entier n tel que la probabilité de E soit supérieure ou égale à 0,99.

4 On note X la variable aléatoire représentant le nombre de boules rouges lors d’une expérience.
Montrer que l’espérance mathématique de X est toujours strictement inférieure à 1.

Événements indépendants

Exercice 8. Jeanne et son portable
(Source : ts-proba-08)
Corrigé page 147

Chaque jour, Jeanne ne peut pas utiliser son portable au travail lorsque l’un des deux événements suivants se produit :
- D : « Son portable est déchargé »
- O : « Elle a oublié son portable chez elle »
On suppose que ces deux événements sont indépendants.
Elle a observé, d’une part, que la probabilité de D est égale à 0,05 et, d’autre part, qu’elle oublie son portable chez elle un jour sur dix.

1 Un jour de travail donné, quelle est la probabilité que Jeanne oublie son portable chez elle et qu’il ne soit pas déchargé ?
2 Un jour de travail donné, quelle est la probabilité qu’elle ne puisse pas se servir de son portable ?
3 Au cours d’une semaine, elle travaille 5 jours. On admet que le fait qu’elle oublie son portable chez elle un jour donné est indépendant du fait qu’elle l’oublie ou non les autres jours.
Quelle est la probabilité de l’événement A : « Elle a oublié son portable chez elle au moins une fois dans la semaine » ?

Exercice 9. Ordinateur et automobile chez les étudiants
(Source : ts-proba-09)
Corrigé page 148

Une étude réalisée sur les étudiants d’une université a permis d’établir que 70% des étudiants possèdent un ordinateur et que, parmi ceux-ci, 40% possèdent une automobile.
On sait aussi que 55% des étudiants de l’université ne possèdent pas d’automobile.
On choisit au hasard un étudiant de cette université et on note :
- O l’événement « l’étudiant possède un ordinateur »
- A l’événement « l’étudiant possède une automobile ».
Les événements O et A sont-ils indépendants ?
Exercice 10. Enquête dans un journal
(Source : ts-proba-10)

Un grand journal a fait réaliser en 2006 une enquête sur un échantillon représentatif de la population française des 18-34 ans.
35 % des personnes interrogées indiquent que leur principale source d’information est la télévision ; parmi elles, 40 % lisent aussi la presse écrite.
25 % des personnes interrogées indiquent que leur principale source d’information est la radio ; parmi elles, 60 % lisent aussi la presse écrite.
Les autres personnes interrogées indiquent que leur principale source d’information est Internet ; parmi elles, 75 % lisent aussi la presse écrite.

On choisit une personne au hasard dans l’échantillon et on considère les événements :
- T : « La personne a pour principale source d’information la télévision. »
- R : « La personne a pour principale source d’information la radio. »
- I : « La personne a pour principale source d’information Internet. »
- E : « La personne lit la presse écrite. »

1 À l’aide des informations fournies par l’énoncé, indiquer la valeur de $P_T(E)$ et $P_R(\overline{E})$.

2 Montrer que $P(E) = 0,59$.

3 Calculer $P_E(I)$ (donner une valeur approchée au centième).

4 Les événements E et I sont-ils indépendants ?
Corrigé de l’exercice 1.

1. a. Trois réponses possibles pour chacune des cinq questions : il y a donc $3^5 = 243$ mots possibles.

b. L’élève répète 5 fois l’expérience de Bernoulli : obtenir la bonne réponse avec une probabilité de $\frac{1}{3}$; ces expériences sont indépendantes, donc la variable aléatoire Z donnant le nombre de réponses exactes suit une loi binomiale de paramètres $n = 5$ et $p = \frac{1}{3}$.

Donc $p(Z = 1) = \binom{5}{1} \left(\frac{1}{3}\right)^1 \left(1 - \frac{1}{3}\right)^{5-1} = 5 \times \frac{1}{3} \times \frac{2^4}{3^4} = \frac{80}{243} = p(E)$.

De même, la probabilité qu’il n’ait aucune réponse juste est :

$$p(Z = 0) = \binom{5}{0} \left(\frac{1}{3}\right)^0 \left(1 - \frac{1}{3}\right)^{5-0} = \frac{2^5}{3^5} = \frac{32}{243} = p(F).$$

Un palindrome est de la forme $abcba$: les trois premiers peuvent être quelconques, mais le quatrième choix doit être le même que le second et le dernier le même que le premier : la probabilité est donc égale à $1 \times 1 \times 1 \times \frac{1}{3} \times \frac{1}{3} = \frac{1}{9} = p(G)$.

2. a. D’après la question 1. un élève a la probabilité égale à $\frac{32}{243}$ de n’avoir aucune réponse exacte. Les élèves répondant de façon indépendante les uns des autres, la variable X suit une loi binomiale de paramètres $n = 28$ et de probabilité $p = \frac{32}{243}$.

b. La probabilité cherchée est égale à :

$$p(X \leq 1) = p(X = 0) + p(X = 1) = \binom{28}{0} \left(\frac{32}{243}\right)^0 \left(1 - \frac{32}{243}\right)^{28-0} + \binom{28}{1} \left(\frac{32}{243}\right)^1 \left(1 - \frac{32}{243}\right)^{28-1}$$

$$= \frac{211}{243}^{28} + 28 \times \frac{32}{243} \times \left(\frac{211}{243}\right)^{27}$$

$\approx 0,1006$

$\approx 0,10$ au centième près.
Corrigé de l’exercice 2.

1 a. Comme A et B sont indépendants,
\[
p(C) = p(A \cap B) = p(A) \times p(B) = 0,02 \times 0,01 = 0,0002.
\]

b. On a :
\[
p(D) = p(A \cup B) = p(A) + p(B) - p(A \cap B) = 0,02 + 0,01 - 0,0002 = 0,0298.
\]

c. On a $E = \overline{D}$ d’où :
\[
p(E) = 1 - p(D) = 1 - 0,0298 = 0,9702.
\]

d. On a :
\[
p_A(B) = \frac{p(A \cap B)}{p(A)} = \frac{0,0002}{0,02} = 0,01.
\]

(en fait $\frac{p(A \cap B)}{p(A)} = \frac{p(A) \times p(B)}{p(A)} = p(B)$).

2 a. On a manifestement une épreuve de Bernoulli avec deux issues (sac sans défaut, sac défectueux).
La variable aléatoire X suit donc une loi binomiale de paramètres $n = 100$ et $p = 0,03$.

b. On sait que la probabilité que k, $0 \leq k \leq 100$ sacs soient défectueux est :
\[
p(X = k) = \binom{100}{k} 0,03^k (1 - 0,03)^{100-k}
\]
L’événement contraire de l’événement « au moins un sac est défectueux » est « il n’y a pas de sac défectueux qui a une probabilité de
\[
\binom{100}{0} 0,03^0 \times 0,97^{100} = 0,97^{100} \approx 0,0476.
\]
La probabilité d’avoir au moins un sac défectueux est donc égale à
\[
1 - 0,97^{100} \approx 0,952 \approx 0,95 \text{ (au centième près)}.
\]
Interprétation : pour 100 sacs prélevés il y a à peu près 95 chances sur 100 d’avoir au moins un sac défectueux.

c. Pour cette loi binomiale on a $E = n \times p = 100 \times 0,03 = 3$.
Interprétation : sur 100 sacs prélevés il y a en moyenne 3 sacs défectueux.
Corrigé de l’exercice 3.

1. On a l’arbre suivant :

\[\begin{array}{c}
D \\
\downarrow \\
0,06 \\
\downarrow \\
0,94 \\
\downarrow \\
D
\end{array} \quad \begin{array}{c}
R \\
\downarrow \\
0,02 \\
\downarrow \\
0,95 \\
\downarrow \\
R
\end{array} \]

2. a. En suivant la deuxième branche :
\[p(D \cap \overline{R}) = 0,06 \times 0,02 = 0,0012.\]

b. Il y a erreur de contrôle pour les événements disjoints \(D \cap \overline{R}\) et \(D \cap R\). Sa probabilité est donc :
\[
p(D \cap \overline{R}) + p(D \cap R) = 0,06 \times 0,02 + 0,94 \times 0,95 \approx 0,0012 + 0,8930 = 0,8942.
\]

3. La probabilité qu’un lecteur MP3 ne soit pas rejeté est égale à :
\[
p(D \cap \overline{R}) + p(D \cap R) = 0,06 \times 0,02 + 0,94 \times 0,95 \approx 0,0012 + 0,8930 = 0,8942.
\]

4. a. La variable aléatoire suit la loi binomiale de paramètres \(n = 4\) et de probabilité \(p = 0,8942\).

La probabilité que \(G = 120 - 50 = 70\) € est égale à :
\[
\binom{4}{4} \times 0,8942^4 \approx 0,6394;
\]

La probabilité que \(G = 60 - 50 = 10\) € est égale à :
\[
\binom{4}{1} \times 0,8942^3 \times (1 - 0,8942) \approx 0,3026;
\]

La probabilité que \(G = -50\) € est égale à \(1 - (0,6394 + 0,3026) \approx 0,058.\)

b. L’espérance mathématique de \(G\) est donc égale à :
\[
70 \times 0,6394 + 10 \times 0,3026 - 50 \times 0,058 \\
= 44,758 + 3,036 - 2,9 \\
\approx 44,89 \text{ €}.
\]

Cela signifie qu’en moyenne on peut compter sur un bénéfice de 44,89 € par lecteur produit.

Il y a en tout \(44 + 33 + 40 = 117 \) élèves sur l’ensemble des trois classes. On a alors l’arbre suivant :

\[
\begin{array}{c}
C_1 \quad 44 \quad \frac{1}{2} \quad G \\
C_2 \quad 33 \quad \frac{1}{3} \quad G \\
C_3 \quad 40 \quad \frac{1}{4} \quad G \\
\end{array}
\]

On en déduit :

\[
p(G) = \frac{44}{117} \times \frac{1}{2} + \frac{33}{117} \times \frac{1}{3} + \frac{40}{117} \times \frac{1}{4} = \frac{43}{117}.
\]

On sait de plus que :

\[
p_G(C_2) = \frac{p(C_2 \cap G)}{p(G)} = \frac{\frac{33}{117} \times \frac{1}{3}}{\frac{43}{117}} = \frac{11}{43}.
\]

Corrigé de l’exercice 5.

1. a. \(P(N < 13) = 0,05 + 0,10 + 0,37 = 0,52. \)
 b. \(P(N \geq 14) = 0,17 + 0,03 + 0,01 = 0,21. \)

2. a. \(E(X) = \sum_{i=1}^{7} x_i p_i = 12,54. \)
 b. \(V(X) = \sum_{i=1}^{7} x_i p_i - E(X)^2 = 1,3884. \)
 \(\sigma(X) = \sqrt{V(X)} \approx 1,18 \)

3. a. \(B = 40X - 275. \)
 b. \(E(B) = E(40X - 275) = 40E(X) - 275 = 226,6. \)
 c. \(\sigma(B) = \sigma(40X - 275) = 40\sigma(X) \approx 40 \times 1,18 \approx 47,2. \)
 d. Le seuil de rentabilité correspond à la valeur de \(X \) tel que \(B < 0. \)

 \(B < 0 \Rightarrow 40X - 275 < 0 \Rightarrow X < \frac{275}{40} \Rightarrow X \leq 6. \)

Comme l’agence loue au minimum 9 véhicules par jour, il n’est pas possible qu’elle soit déficitaire.

Corrigé de l’exercice 6.

1. \(P(J) = \frac{3}{10} ; \quad P(B) = \frac{1}{5} ; \quad P(R) = \frac{1}{10} ; \quad P(V) = \frac{2}{5} \)

2. a. \(P(X = 2) = P(V) = \frac{2}{5} ; \quad P(X = 3) = \frac{1}{2} ; \quad P(X = 10) = P(R) = \frac{1}{10} \)
 b. \(E(X) = 3,3 \quad ; \quad V(X) = 5,21 \quad ; \quad \sigma(X) \approx 2,28 \)

3. \(m = 9 \)
Corrigé de l'exercice 7.

1 On a :

\[
\begin{aligned}
\Omega &= R_1 \cup R_2 \cup B_1 \cup B_2 \cup N_1 \cup N_2 \\
R_1 &= \{k/2k+3, \ 1/2k+3\} \\
R_2 &= \{4/7, \ 1/7\} \\
B_1 &= \{3/7, \ 1/7\} \\
B_2 &= \{3/7, \ 2/7\} \\
N_1 &= \{3/7, \ 2/7\} \\
N_2 &= \{3/7, \ 2/7\} \\
\end{aligned}
\]

2 D’après la formule des probabilités totales :

\[
P(D) = P_{R_1}(B_2) + P_{R_1}(N_2) + P_{B_1}(R_2) + P_{B_1}(N_2) + P_{N_1}(R_2) + P_{N_1}(B_2)
\]

\[
= 1 - (P_{R_1}(R_2) + P_{B_1}(B_2) + P_{N_1}(N_2))
\]

\[
= 1 - \left(\frac{k}{2k+3} \times \frac{4}{7} + \frac{k+1}{2k+3} \times \frac{3}{7} + \frac{2}{2k+3} \times \frac{2}{7} \right)
\]

\[
= 1 - \frac{4k + 3k + 3 + 4}{14k + 21}
\]

\[
P(D) = \frac{k + 2}{2k+3}
\]

3 Dans cette question, \(k = 1 \) donc \(P(D) = \frac{3}{5} \).

Soit \(Y \) la variable aléatoire représentant le nombre d’expériences où on tire deux boules de couleurs différentes. Chaque expérience est répétée de façon indépendante \(n \) fois et chacune d’elles comporte deux issues : « les deux boules sont de couleurs différentes » (succès de probabilité \(P(D) = \frac{3}{5} \)) et « les deux boules sont de la même couleur » (échec). C’est donc un schéma de Bernoulli et donc, \(Y \sim \mathcal{B}(n; \frac{3}{5}) \) (\(Y \) suit la loi binomiale de paramètre \(n \) et \(p = \frac{3}{5} \)).

Ainsi,

\[
p(E) = p(Y \geq 1)
\]

\[
= 1 - p(Y = 0)
\]

\[
= 1 - \binom{n}{0} \left(\frac{3}{5} \right)^0 \left(1 - \frac{3}{5} \right)^n
\]

\[
= 1 - \left(\frac{2}{5} \right)^n.
\]

On veut que \(P(Y \geq 1) \geq 0,99 \) donc nous devons résoudre l’inéquation en \(n \) suivante :

\[
1 - \left(\frac{2}{5} \right)^n \geq 0,99
\]
Soit :
\[
\left(\frac{2}{5}\right)^n \leq 0,01
\]
\[\iff \ln\left(\left(\frac{2}{5}\right)^n\right) \leq \ln 0,01 \quad \text{(stricte croissance du ln)}\]
\[\iff n \ln \left(\frac{2}{5}\right) \leq \ln 0,01\]
\[\iff n \geq \frac{\ln 0,01}{\ln \frac{2}{5}} \quad \text{car } \ln \frac{2}{5} < 0\]
\[\iff n \geq 5,0259.\]

Ainsi, le plus petit entier tel que \(P(E) \geq 0,99\) est \(n = 6\).

4 La loi de probabilité de \(X\) est :
- \(P(X = 0) = P_{B_1}(B_2) + P_{B_1}(N_2) + P_{N_1}(B_2) + P_{N_1}(N_2) = \frac{4k + 12}{14k + 21}\);
- \(P(X = 1) = \frac{3}{7}\);
- \(P(X = 2) = \frac{4k}{14k + 21}\).

Ainsi, l'espérance mathématique de \(X\) est :
\[
E(X) = 0 \times P(X = 0) + 1 \times P(X = 1) + 2 \times P(X = 2)
= \frac{6k + 9}{14k + 21} + \frac{8k}{14k + 21}
= \frac{14k + 9}{14k + 21}
= \frac{14k + 21 - 12}{14k + 21}
= 1 - \frac{12}{14k + 21}
\]

Or, \(\frac{12}{14k + 21} > 0\) donc \(E(X) < 1\).

Corrigé de l'exercice 8.
1 \(P(D \cap O) = P(D) \times P(O) = (1 - 0,05) \times 0,1 = 0,095\) car \(D\) et \(O\) sont indépendants, sont \(D\) et \(O\) le sont aussi.

Donc la probabilité pour que Jeanne oublie son portable chez elle et qu'il soit déchargé est égale à 0,095.

2 \(P(D \cup O) = P(D) + P(O) - P(D \cap O) = 0,05 + 0,1 - 0,005 = 0,145\).

Ainsi, la probabilité pour que Jeanne ne puisse pas se servir de son portable un jour donné est égale à 0,145.

3 On note \(X\) la variable aléatoire représentant le nombre de fois où Jeanne a oublié son portable chez elle. \(X\) suit la loi binomiale de paramètres \(n = 5\) et \(p = 0,1\) car nous répétons 5 fois de façon indépendante un schéma de Bernoulli (regarder si, un jour donné, elle a oublié son portable oui ou non).

Ainsi, \(P(X \geq 1) = 1 - P(X = 0) = 1 - (1 - p)^5 = 0,40951\).

La probabilité pour que Jeanne oublie au moins une fois son portable chez elle est alors égale à 0,40951.
Corrigé de l’exercice 9.

- \(P(O) = 0,7 \);
- \(P(\overline{A}) = 0,55 \) donc \(P(A) = 0,45 \);
- \(P_O(A) = 0,4 \).

Ainsi, \(P_O(A) \neq P(A) \) donc \(A \) et \(O \) ne sont pas indépendants.

Corrigé de l’exercice 10.

1. \(P_E(T) = 0,4 \) et \(P_R(\overline{E}) = 0,4 \).
2. \[
P(E) = P(T) \times P_T(E) + P(R) \times P_R(E) + P(I) \times P_I(E)
= 0,35 \times 0,4 + 0,25 \times 0,6 + 0,4 \times 0,75
= 0,59
\]
3. \[
P_E(I) = \frac{P(I \cap E)}{P(E)} = \frac{0,4 \times 0,75}{0,59} \approx 0,51.
\]
4. \(P(I) = 0,4 \neq P_E(I) \) donc \(E \) et \(I \) ne sont pas indépendants.
Nombres complexes

Exercices d’application du cours
Exercices de réflexion
Exercice & corrigé relus avec attention pour éviter les erreurs

22 février 2017

Forme algébrique

■ Exercice 1. Calculs algébriques
(Source : ts-complexes-13)

Effectuer les calculs suivants et mettre les résultats sous la forme algébrique.

1. \((7 + 2i) + (9 - 4i)\)
2. \((2i - 3) - (8 + 4i)\)
3. \((2 + 3i)(1 + i)\)
4. \((-2 + 4i)(i - 5)\)
5. \((4 - 3i)^2\)
6. \((1 + i)^3\)

■ Exercice 2. Simplification de quotients
(Source : ts-complexes-14)

Mettre sous la forme algébrique les nombres complexes suivants :

1. \(\frac{1 + i}{1 - i}\)
2. \(\frac{1}{3 + 5i}\)
3. \(\frac{2 + i}{3 - 4i}\)
4. \(\frac{1 - 1}{3 + 2i}\)
5. \(\frac{5 + 3i}{2i - 1}\)
6. \(\frac{3i - 4}{4i - 3}\)

■ Exercice 3. Équations quadratiques
(Source : ts-complexes-15)

Résoudre les équations suivantes :

1. \(z^2 + z + 1 = 0\)
2. \(-3z^2 + 5z - 6 = 0\)
3. \(2z^2 - 3z + \frac{17}{4} = 0\)
4. \(100z^2 + 20z + 37 = 0\)

■ Exercice 4. Équations quadratiques (résultat général)
(Source : ts-complexes-16)

Étant donnés trois nombres réels a, b et c, on considère l’équation suivante :

\[az^2 + bz + c = 0 \]

(E)

On note \(\overline{\omega}\) (le conjugué de \(\omega\)) est aussi une solution de (E).
Exercice 5. Application $z \mapsto \frac{z^2}{1-z}$.

Le plan complexe est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$. Soient A, B et C les points d’affixes respectives i, $1+i$ et $-1-i$.

On appelle f l’application du plan privé de A dans lui-même qui, à tout point M d’affixe z ($z \neq i$) associe le point M' d’affixe z' définie par :

$$z' = \frac{z^2}{1-z}.$$

1. Placer les points A, B et C sur une figure qui sera complétée au fur et à mesure de l’exercice. Que peut-on dire des points B et C ?
2. Déterminer les affixes des points B' et C' images de B et C par l’application f.

On pose $z = x + iy$ et $z' = x' + iy'$ avec x, y, x' et y' réels.

a. Démontrer que :

$$x' = \frac{-x(x^2 + y^2 - 2y)}{x^2 + (1-y)^2}.$$

b. En déduire l’ensemble E des points $M(z)$ tels que z' soit un imaginaire pur.

Représenter l’ensemble E.

Formes trigonométrique et exponentielle

Exercice 6. De la forme algébrique à la forme exponentielle

Écrire les nombres complexes suivants sous la forme exponentielle.

1. 1 + i
2. $\frac{1}{2} - \frac{\sqrt{3}}{2}i$
3. $-1 - i\sqrt{3}$
4. 2 - 2i
5. $2\sqrt{3} + 2i$
6. i

Exercice 7. Ensemble de points

Le plan est rapporté au repère $(O; \vec{u}, \vec{v})$.

On considère les points A, B et C d’affixes respectives :

$$z_A = -1 + i\sqrt{3} ; \quad z_B = -1 - i\sqrt{3} ; \quad z_c = 2.$$

1. a. Vérifier que

$$\frac{z_B - z_C}{z_A - z_C} = e^{i\pi}.$$

b. En déduire la nature du triangle ABC.

c. Déterminer le centre et le rayon du cercle Γ_1 circonscrit au triangle ABC.
2 a. Établir que l’ensemble Γ_2 des points M d’affixe z qui vérifient

$$
2 \left(z + \overline{z} \right) + z \overline{z} = 0
$$

est un cercle de centre Ω d’affixe -2.

Préciser son rayon.

b. Vérifier que les points A et B sont éléments de Γ_2.

Exercice 8. Application complexe \(f(z) = \frac{z-2+i}{z+2i} \)

(Source : ts-complexes-01)

Le plan est rapporté à un repère orthonormal direct \((O; \vec{u}, \vec{v})\), unité graphique 4 cm.

Soit \(f \) la fonction qui, à tout nombre complexe \(z \) différent de \(-2i\), associe :

$$
Z = f(z) = \frac{z - 2 + i}{z + 2i}.
$$

On appelle A et B les points d’affixes respectives $z_A = 2 - i$ et $z_B = -2i$.

1 Si $z = x + iy$, x et y étant deux réels, exprimer la partie réelle et la partie imaginaire de Z en fonction x et y. En déduire la nature de :

a. l’ensemble E des points M d’affixe z tels que Z soit un réel;

b. l’ensemble F des points M d’affixe z tels que Z soit un imaginaire pur éventuellement nul;

c. l’ensemble G des points M d’affixe z tels que $|Z| = 1$.

2 Déterminer les ensembles E, F et G sans utiliser les parties réelle et imaginaire de Z.

3 Représenter ces trois ensembles.

4 Calculer $|Z - 1| \times |z + 2i|$ et en déduire que les points M' d’affixe Z, lorsque le point M d’affixe z parcourt le cercle de centre B et de rayon $\sqrt{5}$ sont tous sur un même cercle dont on précisera l’affixe du centre et le rayon.

Exercice 9. Racines n-ièmes de l’unité

(Source : ts-complexes-02)

Soit n un entier naturel non nul.

On appelle **racine n-ième de l’unité** tout nombre complexe z tel que $z^n = 1$.

On note U_n l’ensemble des racines n-ièmes de l’unité. Par exemple, $U_2 = \{-1; 1\}$.

1 a. Démontrer que $U_n = \left\{ e^{2ik\pi/n} , k \in \{0, 1, 2, \ldots, n - 1\} \right\}$.

b. Démontrer que la somme des racines n-ièmes de l’unité est nulle.

c. Démontrer que, dans un repère orthonormal \((O; \vec{u}, \vec{v})\), les points A_k \((0 \leq k \leq n - 1)\) d’affixes respectives $\omega_k = e^{\frac{2ik\pi}{n}}$ sont les sommets d’un polygone régulier.

2 a. Soit $Z \in \mathbb{C}$. On appelle racine n-ième de Z tout nombre complexe z tel que $z^n = Z$.

Soient $R = |Z|$ et Θ un argument de Z.

Démontrer que Z admet les n racines n-ièmes suivantes :

$$
\sqrt[n]{R} e^{i\left(\frac{\Theta}{n} + \frac{2k\pi}{n}\right)} , \quad 0 \leq k \leq n - 1
$$

b. Soit f la fonction polynôme définie par $f(x) = x^4 + 1$.

Déterminer les racines quatrièmes de (-1) puis en déduire que f peut s’écritre comme un produit de deux fonctions polynômes de degré 2 à coefficients réels.
c. Soit z un nombre complexe tel que $1 + z^4 + z^8 = 0$.
Démontrer que z est une racine douzième de l’unité.

Exercice 10. Calcul des valeurs exactes

decos $\frac{\pi}{5}$, cos $\frac{2\pi}{5}$ et cos $\frac{4\pi}{5}$

(Source : ts-complexes-03)

1 Résoudre dans $\mathbb{C} \times \mathbb{C}$ le système :

\[
\begin{cases}
u + v = -\frac{1}{2} \\
u v = -\frac{1}{4}
\end{cases}
\]

2 On pose $\omega = e^{i\frac{2\pi}{5}}$. Démontrer que $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.
En déduire que $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$.

3 Démontrer que :

\[
\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} + \sin \frac{2\pi}{5} \sin \frac{4\pi}{5} = \cos \frac{2\pi}{5}
\]

et

\[
\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} - \sin \frac{2\pi}{5} \sin \frac{4\pi}{5} = \cos \frac{4\pi}{5}.
\]

4 En déduire que $\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} = -\frac{1}{4}$.

5 Démontrer alors que :

\[
\cos \frac{2\pi}{5} = -\frac{1 + \sqrt{5}}{4} \quad \text{et} \quad \cos \frac{4\pi}{5} = -\frac{1 - \sqrt{5}}{4}.
\]

6 *Pour cette question, on admettra que pour tout nombre a,*

\[
\cos 2a = 2 \cos^2 a - 1.
\]

Déduire de la question précédente que :

\[
\cos^2 \frac{\pi}{5} = \frac{3 + \sqrt{5}}{8},
\]

puis en déduire la valeur exacte de $\cos \frac{\pi}{5}$.

Exercice 11. Théorème de Van Aubel

(Source : ts-complexes-04)

Soit ABCD un quadrilatère quelconque de sens direct.
Le but de l’exercice est de démontrer que les diagonales de PQRS sont perpendiculaires et de même longueur.
On note a, b, c, d, p, q, r et s les affixes respectives des points A, B, C, D, P, Q, R et S dans un repère orthonormé $(O; \vec{u}, \vec{v})$ de sens direct.

1. Démontrer que dans le carré construit sur $[AB]$, on a : $p = \frac{a - ib}{1 - i}$.

Établir des relations analogues pour q, r et s.

2. Calculer $\frac{s - q}{r - p}$ puis conclure.

Exercice 12. Point de Vecten
(Source : ts-complexes-05)

Soit ABC un triangle quelconque de sens direct.

On note a, b, c, p, q et r les affixes respectives des points A, B, C, P, Q et R dans un repère orthonormé $(O; \vec{u}, \vec{v})$ de sens direct.
Démontrer que les triangles ABC et PQR ont le même centre de gravité.

Démontrer que dans le carré construit sur [AB], on a : \(p = \frac{a - ib}{1 - i} \).

Établir des relations analogues pour \(q \) et \(r \).

Démontrer que les droites (AQ) et (PR) sont perpendiculaires.
En déduire que les droites (AQ), (BR) et (CP) sont concourantes. Ce point de concours est appelé le point de Vecten du triangle ABC.

Exercice 13. Théorème de Napoléon

(Source : ts-complexes-06)

Le plan est rapporté à un repère orthonormé \((O ; \vec{u}, \vec{v})\) de sens direct.

Partie A

On note \(j = e^{i\frac{\pi}{3}} \). Soient \(U, V \) et \(W \) trois points du plan d’affixes respectives \(u, v \) et \(w \).

1. Démontrer l’équivalence suivante : UVW équilatéral de sens direct \(\iff u - v = -j^2(w - v) \).

2. Démontrer l’équivalence suivante : UVW équilatéral de sens direct \(\iff u + jv + j^2w = 0 \).

Partie B

Soit ABC un triangle quelconque de sens direct. On construit les points P, Q et R tels que BPC, CQA et ARB soient équilatéraux de sens direct.
On note \(U, V \) et \(W \) les centres de gravité respectifs de BPC, CQA et ARB.

Démontrer que UVW est équilatéral de même centre de gravité que ABC.
Exercice 14. Équation à coefficients complexes et application
(Source : ts-complexes-07)

Corrigé page 170

Partie A

On considère dans \mathbb{C} l’équation :

$$(E) : \frac{1}{2}z^2 - \sqrt{3}z + 1 + i = 0 \quad \text{où } i^2 = -1.$$

1. Soit $P(z) = \frac{1}{2}z^2 - \sqrt{3}z + 1 + i$.
 Montrer que le discriminant de P est : $\Delta = -1$.

2. On note A et B les points d’affixes z_A et z_B, où z_A est la solution de l’équation (E) dont la partie imaginaire est la plus grande.
 Donner l’écriture algébrique de z_A.

3. Calculer $\arg\left(\frac{\sqrt{3}+i}{1-i}\right)$.

4. En déduire l’écriture exponentielle de z_A.

5. Donner alors une valeur exacte de $\cos\frac{5\pi}{12}$ et $\sin\frac{5\pi}{12}$.

Partie B

Le plan est rapporté à un repère orthonormal direct $(O ; \vec{u}, \vec{v})$.

On considère l’application F définie par :

$$F : \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{\sqrt{3}}{6}(1-i)z^2 + \frac{\sqrt{3}}{3}(1+i)$$

1. Montrer que chercher les points fixes de F, c’est-à-dire les nombres z tels que $f(z) = z$, est équivalent à résoudre l’équation (E) de la partie A.
 Donner alors les points fixes de F.

2. On note $z' = F(z)$, où $z = x + it$ est l’affixe d’un point de la droite parallèle à l’axe des ordonnées passant par A.
 \begin{enumerate}
 \item Montrer que $x = \frac{\sqrt{3} - 1}{2}$.
 \item Montrer que $z' = a + ib$, où :

 $$a = \frac{\sqrt{3}}{2} - \frac{1}{4} + \frac{3 - \sqrt{3}}{6}t - \frac{\sqrt{3}}{6}t^2 \quad \text{et} \quad b = \frac{\sqrt{3}}{6} + \frac{1}{4} + \frac{3 - \sqrt{3}}{6}t + \frac{\sqrt{3}}{6}t^2.$$
 \end{enumerate}

3. À l’aide d’un logiciel, nous avons tracé l’ensemble des points d’affixe z' pour $t \in [-3;2]$.

Expliquer comment, à l’aide de cet ensemble, construire uniquement au compas le point A.

155
Exercice 15. Construction d’un pentagone régulier
(Source : ts-complexes-08)

Le plan complexe est rapporté au repère orthonormal \((O ; \vec{u}, \vec{v})\). L’unité graphique est 4 cm. On pose :

\[w = e^{i\frac{2\pi}{5}}. \]

1. Simplifier \(w^5\) puis calculer \(1 + w + w^2 + w^3 + w^4\).

2. Montrer que pour tout nombre complexe \(z\) non nul,

\[
\frac{1}{z^2} \left(1 + z + z^2 + z^3 + z^4 \right) = \left(z + \frac{1}{z} \right)^2 + \left(z + \frac{1}{z} \right) - 1.
\]

3. a. Résoudre dans \(\mathbb{C}\) l’équation :

\[Z^2 + Z - 1 = 0. \]

b. En déduire la valeur exacte de \(\cos \left(\frac{2\pi}{5} \right)\).

4. On note K, A et B les points d’affixes respectives \(-\frac{1}{4}, \frac{1}{2}i\) et \(w\).

Soit \(\mathcal{C}\) le cercle de centre K passant par A.

a. Déterminer une équation cartésienne du cercle \(\mathcal{C}\).

b. Le cercle \(\mathcal{C}\) coupe l’axe \((O ; \vec{u})\) en deux points H et H’ (H étant d’abscisse positive).

Montrer que H a pour abscisse \(\cos \left(\frac{2\pi}{5} \right)\).

c. En déduire une construction géométrique simple sur point B.

Achever la construction du pentagone régulier de centre O dont B est un sommet.

Exercice 16. Cocyclicité
(Source : ts-complexes-11)

1. Soient quatre points A, B, C et D d’affixes respectives \(a, b, c\) et \(d\).

En considérant les angles \((\overrightarrow{AC}, \overrightarrow{AD})\) et \((\overrightarrow{BC}, \overrightarrow{BD})\), montrer l’équivalence suivante :

\[A, B, C, D \text{ cocycliques} \iff \frac{(d-a)(c-b)}{(d-b)(c-a)} \in \mathbb{R}. \]

On considère maintenant les quatre points A, B, C et D d’affixes respectives \(a = 4+4i, b = 6+2i, c = 2i\) et \(d = 3 + i + \sqrt{10}e^{\frac{4\pi}{3}}\).

2. Montrer qu’ils sont cocycliques.

3. Déterminez le nombre \(\omega\) tel que \(\arg(d - \omega) = \frac{4\pi}{3}\).

4. Montrer que le point \(\Omega\) d’affixe \(\omega\) est le centre du cercle sur lequel se trouve A, B, C et D.

5. Montrer que le triangle \(A\Omega C\) est rectangle en \(\Omega\).
Exercice 17. Application $z \mapsto \frac{z}{1+z}$

(Source : ts-complexes-12)

On rapporte le plan complexe à un repère orthonormal direct $(O ; \vec{u}, \vec{v})$. On considère l’application complexe de $\mathbb{C} \setminus \{-1\}$ dans \mathbb{C} définie par :

$$f : z \mapsto \frac{z}{1+z}.$$

1. Soit A le point d’affixe $z_A = 1 + i$. Déterminer $f(z_A)$ sous sa forme algébrique.

2. Déterminer les invariants de f, c’est-à-dire les nombres complexes $z = x + iy$ tels que $f(z) = z$.

3. On considère le cercle Γ de centre O passant par A.
 a. Mettre z_A sous la forme exponentielle.
 b. On considère un point M d’affixe $z_M = \sqrt{2}e^{i\theta}$, $\theta \in [0;2\pi]$ sur Γ. Montrer que :
$$f(z_M) = \frac{4\cos^2 \theta + \sqrt{2}\cos \theta - 2}{3 + 2\sqrt{2}\cos \theta} - \frac{i\sin \theta (\sqrt{2} + 4\cos \theta)}{3 + 2\sqrt{2}\cos \theta}.$$

 c. On note \mathcal{E} l’ensemble image de Γ par f. Montrer que \mathcal{E} est symétrique par rapport à l’axe $(O ; \vec{u})$.

 d. On a tracé l’ensemble \mathcal{E} pour θ variant de 0 à π. Compléter la figure afin d’obtenir \mathcal{E} en entier, puis tracer Γ.

157
Corrigé de l’exercice 1.

1. $(7 + 2i) + (9 - 4i) = 7 + 9 + 2i - 4i = 16 - 2i.$
2. $(2i - 3) - (8 + 4i) = -3 - 8 + 2i - 4i = -11 - 2i.$
3. $(2 + 3i)(1 + i) = 2 	imes 1 + 3i^2 + 2i + 3i = 2 - 3 + 5i = -1 + 5i.$
4. $(-2 + 4i)(i - 5) = -2 \times (-5) + 4i - 2i + 4i \times (-5) = 10 - 4 - 2i - 20i = 6 - 22i.$
5. $(4 - 3i)^2 = 4^2 + (3i)^2 - 2 \times 4 \times 3i = 16 - 9 - 24i = 7 - 24i.$

6. $(1 + i)^3 = (1 + i)(1 + i) = 2i(1 + i) = 2i + 2i^2 = -2 + 2i.$

Méthode de développement : lorsque je développe :

$$(a + bi)(a' + b'i)$$

je choisis d’écrire en premier : $aa' + bb'i^2 = aa' - bb'$ afin d’avoir la partie réelle en premier et d’un seul coup. Ensuite, je considère les produits d’un réel par un imaginaire : $ab'i + ba'i$ afin d’avoir la partie imaginaire d’un coup.

Corrigé de l’exercice 2.

1. \[
\frac{1 + i}{1 - i} = \frac{(1 + i)(1 + i)}{(1 - i)(1 + i)} = \frac{2i}{2} = 1.
\]
2. \[
\frac{1}{3 + 5i} = \frac{1(3 - 5i)}{(3 + 5i)(3 - 5i)} = \frac{3 - 5i}{3^2 + 5^2} = \frac{3}{34} - \frac{5}{34}i
\]
3. \[
\frac{2 + i}{3 - 4i} = \frac{(2 + i)(3 + 4i)}{(3 - 4i)(3 + 4i)} = \frac{2 + 11i}{3^2 + 4^2} = \frac{2}{25} + \frac{11}{25}i
\]
4. \[
\frac{i - 1}{3 + 2i} = \frac{(-1 + i)(3 - 2i)}{(3 + 2i)(3 - 2i)} = \frac{-1 + 5i}{3^2 + 2^2} = \frac{1}{13} + \frac{5}{13}i
\]
5. \[
\frac{5 + 3i}{2i - 1} = \frac{(5 + 3i)(-1 - 2i)}{(-1 + 2i)(-1 - 2i)} = \frac{1 - 13i}{(-1)^2 + 2^2} = \frac{1}{5} - \frac{13}{5}i
\]
6. \[
\frac{3i - 4}{4i - 3} = \frac{(-4 + 3i)(-3 - 4i)}{(-3 + 4i)(-3 - 4i)} = \frac{24 + 7i}{(-3)^2 + 4^2} = \frac{24}{25} + \frac{7}{25}i
\]
Corrigé de l’exercice 3.

1. \(z^2 + z + 1 = 0 \). Le discriminant de \(z^2 + z + 1 \) est :
\[
\Delta = 1^2 - 4 \times 1 \times 1 = -3 < 0
\]
donc l’équation admet deux solutions complexes :
\[
\begin{align*}
 z_1 &= \frac{-1 - i\sqrt{3}}{2} \\
 z_2 &= \frac{-1 + i\sqrt{3}}{2}
\end{align*}
\]

2. \(-3z^2 + 5z - 6 = 0 \). Le discriminant de \(-3z^2 + 5z - 6 \) est :
\[
\Delta = 5^2 - 4 \times (-3) \times (-6) = 25 - 72 = -47 < 0
\]
donc l’équation admet deux racines complexes :
\[
\begin{align*}
 z_1 &= \frac{-5 - i\sqrt{47}}{6} \\
 z_2 &= \frac{-5 + i\sqrt{47}}{-6}
\end{align*}
\]
soit :
\[
\begin{align*}
 z_1 &= \frac{5 + i\sqrt{47}}{6} \\
 z_2 &= \frac{5 - i\sqrt{47}}{6}
\end{align*}
\]

3. \(2z^2 - 3z + \frac{17}{4} = 0 \). Le discriminant de \(2z^2 - 3z + \frac{17}{4} \) est :
\[
\Delta = (-3)^2 - 4 \times 2 \times \frac{17}{4} = 9 - 34 = -25 < 0
\]
donc l’équation admet deux racines complexes :
\[
\begin{align*}
 z_1 &= \frac{3 - i\sqrt{25}}{4} \\
 z_2 &= \frac{3 + i\sqrt{25}}{4}
\end{align*}
\]
soit :
\[
\begin{align*}
 z_1 &= \frac{3 - 5i}{4} \\
 z_2 &= \frac{3 + 5i}{4}
\end{align*}
\]

4. \(100z^2 + 20z + 37 = 0 \). Le discriminant de \(100z^2 + 20z + 37 \) est :
\[
\Delta = (20)^2 - 4 \times 100 \times 37 = 400 - 400 \times 37 = -400 \times 36 = -(20 \times 6)^2 = -120^2 < 0
\]
donc l’équation admet deux racines complexes :
\[
\begin{align*}
 z_1 &= \frac{-20 - 120i}{200} \\
 z_2 &= \frac{-20 + 120i}{200}
\end{align*}
\]
soit :
\[
\begin{align*}
 z_1 &= \frac{-1 - 6i}{10} \\
 z_2 &= \frac{-1 + 6i}{10}
\end{align*}
\]

159
Corrigé de l'exercice 4.

Corrigé de l'exercice 5.

1 a. Voir figure en fin de correction.

B et C sont alignés car \(z_B = -z_C \).

b. B’ a pour affixe :

\[
\frac{(1 + i)^2}{i - (1 + i)} = \frac{1 - 1 + 2i - 1}{1 + 2i - 1} = \frac{-2i}{-1} = 2i
\]

C’ a pour affixe :

\[
\frac{(-1 - i)^2}{i - (-1 - i)} = \frac{1 + 2i - 1}{1 + 2i} = \frac{2i(1 - 2i)}{1 + 2i} = \frac{2i + 4}{1^2 + 2^2} = \frac{4}{5} + \frac{2}{5}i
\]

2 On résout l’équation \(f(z) = z \) :

\[
f(z) = z \iff \frac{z^2}{i - z} = z \iff z^2 = z(i - z) \iff 2z^2 - iz = 0 \iff z(2z - i) = 0 \iff z = 0 \text{ ou } z = \frac{1}{2}i
\]

Par conséquent, \(f \) admet deux points fixes d’affixes respectives 0 et \(\frac{1}{2}i \).

3 Les points B, O et C sont alignés mais leurs images ne le sont pas : f ne conserve donc pas l’alignement donc ne conserve pas le milieu.
4 a. \(x' + iy' = \frac{(x + iy)^2}{1 - (x + iy)} \)
\[\begin{align*}
&= \frac{x^2 - y^2 + 2xyi}{-x + (1 - y)i} \\
&= \frac{(x^2 - y^2 + 2xyi)(-x - (1 - y)i)}{(-x + (1 - y)i)(-x - (1 - y)i)} \\
&= \frac{-x(x^2 - y^2) + 2xy(1 - y) + (2x^2y - (1 - y)(x^2 - y^2)i}{(-x)^2 + (1 - y)^2}
\end{align*} \]
Ainsi,
\[x' = \frac{-x(x^2 - y^2) + 2xy(1 - y)}{x^2 + (1 - y)^2}, \]
soit
\[x' = \frac{-x(x^2 - y^2) - 2xy(y - 1)}{x^2 + (1 - y)^2}, \]
ou encore :
\[x' = \frac{-x(x^2 - y^2 + 2y^2 - 2)}{x^2 + (1 - y)^2}, \]
c’est-à-dire :
\[x' = \frac{-x(x^2 + y^2 - 2y)}{x^2 + (1 - y)^2} \]

b. Pour que \(z' \) soit un imaginaire pur, il faut \(x' = 0 \) soit :
\[-x(x^2 + y^2 - 2y) = 0 \]
\[\Leftrightarrow \begin{cases}
 x = 0 \\
 x^2 + y^2 - 2y = 0 \\
\end{cases} \]
\[\Leftrightarrow \begin{cases}
 x = 0 \\
 (x - 0)^2 + (y - 1)^2 = 1^2 \\
\end{cases} \]
Ainsi, \(\mathcal{E} \) est l’union de l’axe \((O; \overrightarrow{u})\) et du cercle de centre A et de rayon 1 (représenté en bleu dans le repère).
Corrigé de l’exercice 6.

1.
\[|1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2}. \] Donc
\[1 + i = \sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} i \right) = \sqrt{2} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{i \frac{\pi}{4}} \]

2.
\[\frac{1}{2} - \frac{\sqrt{3}}{2} i = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = e^{i \frac{\pi}{3}} \]

3.
\[|-1 - i\sqrt{3}| = \sqrt{(-1)^2 + (-\sqrt{3})^2} = \sqrt{4} = 2. \] Donc :
\[-1 - i\sqrt{3} = 2 \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) = 2 \left[\cos \left(\pi + \frac{\pi}{3} \right) + i \sin \left(\pi + \frac{\pi}{3} \right) \right] = 2 e^{i \frac{4\pi}{3}} \]

4.
\[|2 - 2i| = \sqrt{2^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}. \] Donc :
\[2 - 2i = 2\sqrt{2} \left(\frac{2}{2\sqrt{2}} - \frac{2}{2\sqrt{2}} i \right) = 2\sqrt{2} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} i \right) = 2\sqrt{2} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right] = 2\sqrt{2} e^{-\frac{\pi}{4}} \]

5.
\[|2\sqrt{3} + 2i| = \sqrt{(2\sqrt{3})^2 + 2^2} = \sqrt{12 + 4} = \sqrt{16} = 4. \] Donc :
\[2\sqrt{3} + 2i = 4 \left(\frac{\sqrt{3}}{2} + \frac{1}{2} i \right) = 4 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = 4 e^{i \frac{\pi}{6}} \]

6.
\[i = 0 + 1 \times i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = e^{i \frac{\pi}{2}} \]
Corrigé de l’exercice 7.

1. a. \[
\frac{z_B - z_C}{z_A - z_C} = \frac{-1 - i\sqrt{3} - 2}{-1 + i\sqrt{3} - 2} = \frac{-3 - i\sqrt{3}}{-3 + i\sqrt{3}} = \frac{(-3 - i\sqrt{3})^2}{(-3 + i\sqrt{3})(-3 - i\sqrt{3})} = \frac{6 + 6i\sqrt{3}}{12} = \frac{1 + i\sqrt{3}}{2} = \frac{1}{2} + \frac{1}{2}\sqrt{3} \]

\[
\frac{z_B - z_C}{z_A - z_C} = e^{i\pi/3}
\]

b. De la question précédente, on déduit que \(\text{arg} \left(\frac{z_B - z_C}{z_A - z_C} \right) = \text{arg} \left(e^{i\pi/3} \right) = \frac{\pi}{3} \).

Or, \(\text{arg} \left(\frac{z_B - z_C}{z_A - z_C} \right) = \langle \overrightarrow{CA}, \overrightarrow{CB} \rangle \). Donc, \(\langle \overrightarrow{CA}, \overrightarrow{CB} \rangle = \frac{\pi}{3} \).

De plus, \(z_A = \overline{z_B} \), ce qui signifie que A et B sont symétriques par rapport à \((O; \overrightarrow{u})\), et C se trouve sur \((O; \overrightarrow{u})\) donc \(CA = CB\). Le triangle ABC est donc isocèle en C. Et comme l’angle au sommet principal est égal à \(\frac{\pi}{3}\), on en déduit que ABC est équilatéral.

c. Si \(z\) représente l’affixe de ce centre :

\[
z = \frac{z_A + z_B + z_C}{3} = 0
\]

Ainsi, O est le centre du cercle circonscrit à ABC.
Le rayon de \(\Gamma_1\) est donc OC, soit 2.

2. a. Posons \(z = x + iy\). Alors,

\[
2(z + \overline{z}) + z\overline{z} = 0 \iff 2(x + iy + x - iy) + (x + iy)(x - iy) = 0
\]

\[
\iff 4x + x^2 + y^2 = 0
\]

\[
\iff (x + 2)^2 - 4 + (y - 0)^2 = 0
\]

\[
\iff (x + 2)^2 + (y - 0)^2 = 2^2
\]

Ainsi, l’ensemble des points \(M(x; y)\) vérifiant l’équation est le cercle de centre \(\Omega(-2; 0)\)

et de rayon \(r = 2\).

b. On remplace \(z\) par \(z_A\) dans l’expression \(2(z + \overline{z}) + z\overline{z}\) :

\[
2(z_A + \overline{z_A}) + z_A\overline{z_A} = 4\Re(z_A) + |z_A|^2
\]

\[
= -4 + ((-1)^2 + \sqrt{3}^2)
\]

\[
= -4 + 4
\]

\[
= 0
\]
Corrigé de l’exercice 8.

1. \(Z = \frac{(x - 2 + i(y + 1))(x - (y + 2)i)}{(x + (y + 2)i)(x - (y + 2)i)} \)
 \(= \frac{x(x - 2) + (y + 1)(y + 2) + i[x(y + 1) - (x - 2)(y + 2)]}{x^2 - (y - 2)^2} \)
 Donc \(\Re(Z) = \frac{x^2 + y^2 - 2x + 3y + 2}{x^2 - (y - 2)^2} \) et \(\Im(Z) = \frac{-x + 2y + 4}{x^2 - (y - 2)^2} \).

 a. \(Z \in \mathbb{R} \iff \Re(Z) = 0 \iff -x + 2y + 4 = 0. \)
 Ainsi, E est la droite d’équation cartésienne \(-x + 2y + 4 = 0\).

 b. \(Z = ki, \; k \in \mathbb{R} \Rightarrow \Re(Z) = 0 \Rightarrow (x - 1)^2 + \left(y + 3 \right)^2 = \left(\frac{\sqrt{5}}{2} \right)^2. \)
 F est donc le cercle de centre d’affixe \(1 - \frac{3}{2}i \) et de rayon \(\frac{\sqrt{5}}{2} \).

 c. \(|Z| = 1 \Rightarrow |z - z_A| = |z - z_B|. \)
 G est donc la médiatrice de [AB].

2. \(a. \; \arg(Z) = \frac{\pi}{2}. \; Z \in \mathbb{R} \Rightarrow \arg(Z) = 0 \mod \pi \Rightarrow (BM, AM) = 0 \mod \pi. \)
 Donc, A, B et M sont alignés. E est donc la droite (AB).

 b. \(Z = ki, \; k \in \mathbb{R} \Rightarrow \arg(Z) = \frac{\pi}{2} \mod \pi \Rightarrow (BM, AM) = \frac{\pi}{2} \mod \pi. \)
 Ainsi, BAM est un triangle rectangle en M. Donc F est le cercle de diamètre [AB].

 c. \(|Z| = 1 \Rightarrow |z - z_A| = |z - z_B|. \)
 G est donc la médiatrice de [AB].

3. \(Z - 1 = \frac{z - 2 + i - z - 2i}{z + 2i} = \frac{-2 - i}{z + 2i} \) donc \(|Z - 1| \times |z + 2i| = |-2 - i| = \sqrt{4 + 1} = \sqrt{5}. \)
Si \(M \in \mathcal{C}(B, \sqrt{5}) \), alors \(z = z_B + \sqrt{5}e^{i\theta} \) et donc \(|z + 2i| = |\sqrt{5}e^{i\theta}| = \sqrt{5}. \)
Ainsi, \(|Z - 1| = 1 \). Donc \(M' \) sera sur le cercle de centre d’affixe 1 et de rayon 1.

Corrigé de l’exercice 9.

1. Dans un premier temps, pour tout \(\omega_k = e^{2ik\pi}, \; k \in \{0, 1, 2, \ldots, n - 1\} \), \(\omega_k^n = e^{2ik\pi} = 1. \)
 Donc les éléments de \(\mathbb{U}_n \) sont bien des racines \(n \)-ièmes de l’unité.

 Réciproquement, tout nombre complexe \(z = re^{i\theta}, \; \theta \in [0; 2\pi[, \; r \in \mathbb{R}_+ \), étant une racine de l’unité vérifie l’égalité : \(r^n e^{in\theta} = 1 \) (par définition) c’est-à-dire \(r^n e^{in\theta} = e^{i\theta} \).
Or, deux nombres complexes sont égaux si et seulement si leur module sont égaux et
leur argument sont aussi égaux (modulo 2π). Donc :

\[
\begin{aligned}
 r^n &= 1 \\
 n\theta &= 2k\pi, k \in \mathbb{Z}
\end{aligned}
\]

Soit :

\[
\begin{aligned}
 r &= 1 \text{ car } r \in \mathbb{R}_+ \\
 \theta &= \frac{2k\pi}{n}
\end{aligned}
\]

Or, nous avons pris θ dans l’intervalle $[0; 2\pi[$ donc $0 \leq k < n$. Ainsi, si z est une racine n-ième de l’unité, il s’écrit $e^{\frac{2k\pi}{n}}$ où k est un entier compris entre 0 et $n - 1$.

Ainsi, $\mathbb{U}_n = \{\omega_k = e^{\frac{2k\pi}{n}}, k \in \{0, 1, 2, \ldots, n - 1\}\}$.

b. Notons $\omega = e^{\frac{2\pi}{n}}$. Alors, $\mathbb{U}_n = \{\omega^k, k \in \{0, 1, 2, \ldots, n - 1\}\}$.

La somme des racines n-ièmes de l’unité est donc :

\[
\omega^0 + \omega^1 + \omega^2 + \cdots + \omega^{n-1} = \omega^n = 1 - \omega = 0 \quad \text{car, par définition, } \omega^n = 1
\]

c. Pour $k \in \{0, 1, 2, \ldots, n - 1\}$, on a :

\[
\left(\overrightarrow{OA}_k, \overrightarrow{OA}_{k+1}\right) = \arg \left(\frac{\omega_{k+1}}{\omega_k}\right) = e^{\frac{2k\pi}{n}[2\pi]}
\]

en ayant noté, par commodité, $\omega_n = \omega_0 = 1$ et $A_n = A_0$.

On en déduit alors que le polygone $A_0A_1\ldots A_{n-1}$ est régulier.

2. a. Soit $z = re^{i\theta} \in \mathbb{C}$. On a :

\[
z^n = Z \iff r^n e^{in\theta} = Re^{i\theta} \iff \left\{ \begin{array}{l}
 r^n = R \\
 \theta = \frac{\Theta}{n} + \frac{2k\pi}{n}, k \in \mathbb{Z}
\end{array} \right.
\]

Les racines n-ièmes de Z sont donc les n nombres $\sqrt[n]{R}e^{\frac{i\Theta}{n} + \frac{2k\pi}{n}}, k \in \{0, 1, 2, \ldots, n - 1\}$.

b. Les racines quatrièmes de l’unité sont : $1, -1, i$ et $-i$.

On connaît une racine particulière de $-1 : e^{i\frac{\pi}{2}}$. Les racines quatrièmes de -1 sont obtenues en multipliant les racines les racines quatrièmes de l’unité par la racine quatrième particulière :

\[
e^{i\frac{\pi}{4}}, -e^{i\frac{\pi}{4}}, ie^{i\frac{\pi}{4}}, -ie^{i\frac{\pi}{4}}
\]

c’est-à-dire :

\[
e^{i\frac{\pi}{4}}, e^{i\frac{-3\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{-i\frac{\pi}{4}}
\]

Or, les racines de $x^4 + 1$ sont précisément les racines quatrièmes de -1 d’où :

\[
f(x) = x^4 + 1 = \left(x - e^{i\frac{\pi}{4}}\right)\left(x - e^{-i\frac{\pi}{4}}\right)\left(x - e^{i\frac{3\pi}{4}}\right)\left(x - e^{-i\frac{3\pi}{4}}\right)
\]

Soit :

\[
f(x) = \left(x^2 - 2x \cos \frac{\pi}{4} + 1\right)\left(x^2 - 2x \cos \frac{3\pi}{4} + 1\right)
\]

\[
f(x) = \left(x^2 - x\sqrt{2} + 1\right)\left(x^2 + x\sqrt{2} + 1\right)
\]

c. On sait que $1 + z^4 + z^8 = 0$. Donc, en multipliant par z, z^2 et z^3, on a :

\[
z + z^5 + z^9 = 0 \quad ; \quad z^2 + z^6 + z^{10} = 0 \quad ; \quad z^3 + z^7 + z^{11} = 0
\]

165
En sommant les quatre égalités, on a :

$$
\sum_{k=1}^{11} z^k = 0
$$

z étant différent de 1, cela nous donne :

$$
\frac{1 - z^{12}}{1 - z} = 0,
$$

soit :

$$
z^{12} = 1.
$$

z est donc une racine douzième de l'unité.

Corrigé de l'exercice 10.

1. Par substitution, on a : $v = -u - \frac{1}{2}$ (d’après la première équation). Ainsi, la seconde équation nous donne :

$$
\left(-u - \frac{1}{2}\right) = -\frac{1}{4},
$$

d'où :

$$
4u^2 + 2u - 1 = 0.
$$

Le discriminant du membre de gauche est : $\Delta = 20$, d'où les deux solutions suivantes :

$$
u_1 = \frac{-1 - \sqrt{5}}{4} ; \quad u_2 = \frac{-1 + \sqrt{5}}{4}.
$$

On en déduit alors les valeurs de v correspondantes :

$$
v_1 = -u_1 - \frac{1}{2} = \frac{-1 + \sqrt{5}}{4} ; \quad v_2 = -u_2 - \frac{1}{2} = \frac{-1 - \sqrt{5}}{4}.
$$

Le système admet donc deux couples de solutions :

$$\left\{ \left(\frac{-1 - \sqrt{5}}{4} ; \frac{-1 + \sqrt{5}}{4} \right) ; \left(\frac{-1 + \sqrt{5}}{4} ; \frac{-1 - \sqrt{5}}{4} \right) \right\}.$$

2. Il s'agit ici de la somme des 5 premiers termes d’une suite géométrique de raison ω donc :

$$
1 + \omega + \omega^2 + \omega^3 + \omega^4 = \frac{1 - \omega^5}{1 - \omega} = 0 \quad \text{car} \quad \omega^5 = 1.
$$

On a alors :

$$
1 + e^{i \frac{2\pi}{5}} + e^{i \frac{4\pi}{5}} + e^{i \frac{6\pi}{5}} + e^{i \frac{8\pi}{5}} = 0,
$$

soit :

$$
1 + e^{i \frac{2\pi}{5}} + e^{i \frac{4\pi}{5}} + e^{-i \frac{4\pi}{5}} + e^{-i \frac{8\pi}{5}} = 0.
$$

Ainsi :

$$
1 + 2 \cos \frac{2\pi}{5} + 2 \cos \frac{4\pi}{5} = 0 \quad \text{(Formules d’Euler)},
$$

soit :

$$
\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}.$$
3 En utilisant les formules d’additions trigonométriques, on a :
\[
\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} + \sin \frac{2\pi}{5} \sin \frac{4\pi}{5} = \cos \left(\frac{4\pi}{5} - \frac{2\pi}{5} \right) = \cos \frac{2\pi}{5}
\]
et :
\[
\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} - \sin \frac{2\pi}{5} \sin \frac{4\pi}{5} = \cos \left(\frac{4\pi}{5} + \frac{2\pi}{5} \right) = \cos \frac{6\pi}{5} = \cos \frac{-4\pi}{5} = \cos \frac{4\pi}{5}.
\]
4 En ajoutant membre à membre les égalités de la question précédente et en utilisant la question 2, on a :
\[
-\frac{1}{2} = 2 \cos \frac{2\pi}{5} \cos \frac{4\pi}{5}
\]
d'où
\[
\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} = -\frac{1}{4}.
\]
5 En posant \(u = \cos \frac{2\pi}{5} \) et \(v = \cos \frac{4\pi}{5} \), on arrive au même système que celui de la question 1. Or, \(u > 0 \) et \(v < 0 \). On en déduit que le couple solution est :
\[
\cos \frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{4} \quad \text{et} \quad \cos \frac{4\pi}{5} = \frac{-1 - \sqrt{5}}{4}.
\]
6 L’égalité \(\cos 2a = 2 \cos^2 a - 1 \) lorsque \(a = \frac{\pi}{5} \) donne :
\[
\cos \frac{2\pi}{5} = 2 \cos^2 \frac{\pi}{5} - 1,
\]
soit
\[
\cos^2 \frac{\pi}{5} = \frac{1}{2} \left(\cos \frac{2\pi}{5} + 1 \right).
\]
D’après la question précédente, on peut alors écrire :
\[
\cos^2 \frac{\pi}{5} = \frac{1}{2} \left(\frac{-1 + \sqrt{5}}{4} + 1 \right)
\]
\[
\cos^2 \frac{\pi}{5} = \frac{3 + \sqrt{5}}{8}
\]
Or, \(0 < \frac{\pi}{5} < \frac{\pi}{2} \) donc \(\cos \frac{\pi}{5} > 0 \). D'où :
\[
\cos \frac{\pi}{5} = \sqrt{\frac{3 + \sqrt{5}}{8}} = \frac{\sqrt{3 + \sqrt{5}}}{2\sqrt{2}}.
\]
Posons :
\[
\sqrt{3 + \sqrt{5}} = a + b\sqrt{5}.
\]
Alors,
\[
3 + \sqrt{5} = (a + b\sqrt{5})^2 = a^2 + 5b^2 + 2ab\sqrt{5}.
\]
Par identification, on obtient alors :
\[
\begin{cases}
3 = a^2 + 5b^2 & \text{nombre entier} \\
1 = 2ab & \text{coefficient de } \sqrt{5}
\end{cases}
\]
De la seconde égalité, on a :
\[
b = \frac{1}{2a},
\]
et donc, de la première, on déduit :

\[3 = a^2 + \frac{5}{4a^2} \]

soit :

\[4a^4 - 12a^2 + 5 = 0. \]

En posant \(A = a^2 \), on obtient :

\[4A^2 - 12A + 5 = 0. \]

Le discriminant du membre de gauche est :

\[\Delta = 144 - 4 \times 4 \times 5 = 64. \]

Il y a donc deux solutions à la dernière équation :

\[A_1 = \frac{12 - \sqrt{64}}{8} = \frac{1}{2} ; \quad A_2 = \frac{5}{2}. \]

On a alors :

\[a_1 = \frac{1}{\sqrt{2}} \quad \text{ou} \quad a_1 = -\frac{1}{\sqrt{2}} ; \quad a_2 = \frac{\sqrt{5}}{\sqrt{2}} \quad \text{ou} \quad a_2 = -\frac{\sqrt{5}}{\sqrt{2}}. \]

Prenons \(a = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \).

Alors, \(b = \frac{1}{2a} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \).

Ainsi, \(\sqrt{3} + \sqrt{5} = \frac{\sqrt{2}}{2} \left(1 + \sqrt{5} \right) \), et donc

\[\cos \frac{\pi}{5} = \frac{1}{2\sqrt{2}} \times \frac{\sqrt{2}}{2} \left(1 + \sqrt{5} \right) \]

soit :

\[\cos \frac{\pi}{5} = \frac{1 + \sqrt{5}}{4} \]

Corrigé de l’exercice 11.

1 Par construction, on peut dire que A est l’image de B par la rotation de centre P et d’angle \(\frac{\pi}{2} \). Donc :

\[a - p = i(b - p) \]

\[\Leftrightarrow a - ib = p - ip \]

\[\Leftrightarrow p = \frac{a - ib}{1 - i} \]

De même, on obtient :

\[q = \frac{b - ic}{1 - i} ; \quad r = \frac{c - id}{1 - i} ; \quad s = \frac{d - ia}{1 - i} \]

2 \(\frac{s - q}{r - p} = \frac{d - b + i(c - a)}{c - a + i(b - d)} = i \).

Donc \(\arg \left(\frac{s - q}{r - p} \right) = \frac{\pi}{2} \) et \(| s - q | = 1 \).

On en déduit que (PR) et (QS) sont perpendiculaires et que PR = QS.
Corrigé de l’exercice 12.

1 A étant l’image de B par la rotation de centre P et d’angle $\frac{\pi}{2}$, on peut écrire : $a - p = i(b - p)$.
 De même, $b - q = i(c - q)$ et $c - r = i(a - r)$.
 En additionnant membre à membre ces trois égalités, on a :

 $a + b + c - (p + q + r) = i(a + b + c - (p + q + r))$,

 soit :

 $a + b + c = p + q + r$.

2 De l’égalité $a - p = i(b - p)$, on en déduit que $p = \frac{a - ib}{1 - i}$.
 De même, à partir des autres égalités, on a : $q = \frac{b - ic}{1 - i}$ et $r = \frac{c - ia}{1 - i}$.

3 On a :

 $\frac{r - p}{q - a} = \frac{c - a + i(b - a)}{b - a + i(a - c)} = 1$.

Ainsi (PR) et (AQ) sont perpendiculaires (donc (AQ) est la hauteur issue de A de PQR). Par un raisonnement analogue, on démontre que (BR) et (CP) sont les deux autres hauteurs de PQR.

(AQ), (BR) et (CP) sont donc concourantes.

Corrigé de l’exercice 13.

Partie A

1 UVW est équilatéral de sens direct donc U est l’image de W par la rotation de centre V et d’angle $\frac{\pi}{3}$. Ainsi :

 $u - v = e^{i\frac{\pi}{3}}(w - v) = -j^{2}(w - v)$

La réciproque est triviale.

2 D’après ce qui précède, on a $u - v = -j^{2}(w - v)$. Donc $u + (-1 - j^{2})v + j^{2}w = 0$. Or, $1 + j + j^{2} = 0$ donc $u + jv + j^{2}w = 0$.

Partie B

Par hypothèse, on a :

$a - w = j(b - w)$ \hspace{1cm} (VII.1)

$b - u = j(c - u)$ \hspace{1cm} (VII.2)

$c - v = j(a - v)$ \hspace{1cm} (VII.3)

D’où :

$a + b + c - (u + v + w) = j(a + b + c - (u + v + w))$.

Donc :

$a + b + c = u + v + w$.

Ainsi, ABC et UVW ont le même centre de gravité.

De légalité (1), on déduit :

$w = \frac{a - jb}{1 - j}$.
De légalité (2), on déduit :
\[u = \frac{b - jc}{1 - j}. \]

De légalité (3), on déduit :
\[v = \frac{c - ja}{1 - j}. \]

D'où :
\[u + jv + j^2w = \frac{a - jb + jb - j^2c + j^2c - a}{1 - j} = 0. \]

Donc UVW est équilatéral de sens direct.

Corrigé de l'exercice 14.

Partie A

1 Le discriminant de \(P \) est :

\[
\Delta = b^2 - 4ac
\]

\[
\Delta = (-\sqrt{3})^2 - 4 \times \frac{1 - i}{2} \times (1 + i)
\]

\[
\Delta = 3 - 2(1 - i)(1 + i)
\]

\[
\Delta = 3 - 2(1 + 1)
\]

\[
\Delta = 3 - 4
\]

\[
\Delta = -1
\]

2 Les racines de \(P \) sont données par les formules :

\[
\frac{-b - i\sqrt{\Delta}}{2a}; \quad \frac{-b + i\sqrt{\Delta}}{2a}
\]

Ainsi, comme \(z_A \) est la solution de \((E)\) ayant la plus grande partie imaginaire :

\[
z_A = \frac{\sqrt{3} + i}{1 - i}
\]

\[
= \frac{(\sqrt{3} + i)(1 + i)}{(1 - i)(1 + i)}
\]

\[
z_A = \frac{\sqrt{3} - 1}{2} + i \frac{\sqrt{3} + 1}{2}
\]

3 \(\arg(z_A) = \arg\left(\frac{\sqrt{3} + i}{1 - i}\right) = \arg\left(\sqrt{3} + i\right) - \arg(1 - i). \) Ainsi :

\[
\arg(z_A) = \arg\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) - \arg\left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)
\]

\[
= \frac{\pi}{6} + \frac{\pi}{4}
\]

\[
\arg(z_A) = \frac{5\pi}{12}
\]
4 \[|z_A| = \left| \frac{\sqrt{3} + i}{1 - i} \right| = \left| \frac{\sqrt{3} + i}{1 - i} \right| \]
\[= \frac{2 \sqrt{\frac{3}{2} + \frac{1}{2}i}}{\sqrt{2} \left| \frac{\sqrt{3}}{2} - \frac{\sqrt{1}}{2}i \right|} = \frac{2}{\sqrt{2}} = \sqrt{2}.\]
Ainsi, \[z_A = \sqrt{2}e^{\frac{5\pi}{12}}.\]

5 Nous avons :
\[z_A = \sqrt{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right) = \frac{\sqrt{3} - 1}{2} + i \frac{\sqrt{3} + 1}{2} \quad \text{ (d’après la question 2)}.\]

Donc :
\[\cos \frac{5\pi}{12} = \frac{\sqrt{3} - 1}{2\sqrt{2}} ; \quad \sin \frac{5\pi}{12} = \frac{\sqrt{3} + 1}{2\sqrt{2}},\]
\[\cos \frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} ; \quad \sin \frac{5\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \]

Partie B

1 Soit \(z\) un point fixe de \(F\); par conséquent, \(z = F(z)\). Or :
\[z = F(z) \iff z = \frac{\sqrt{3}}{6}(1 - i)z^2 + \frac{\sqrt{3}}{6}(1 + i) \]
\[\iff \sqrt{3}z = \frac{1-i}{2}z^2 + (1 + i) \]
\[\iff 0 = \frac{1-i}{2}z^2 - \sqrt{3}z + (1 + i) \]
\[\iff (E)\]
Ainsi, les points fixes de \(F\) sont \(z_A\) et \(z_B\).

2 a. La droite parallèle à l’axe des ordonnées et qui passe par \(A\) a pour équation \(x = \Re(z_A)\). Or, nous avons vu dans la question 2 de la partie A que \(\Re(z_A) = \frac{\sqrt{3} - 1}{2}\).
Ainsi, si \(z = x + it\) est l’affixe d’un point de la droite passant par \(A\) et parallèle à l’axe des ordonnées, alors \(x = \frac{\sqrt{3} - 1}{2}\).
b.

\[z' = F(z) \]

\[= \frac{\sqrt{3}}{6}(1 - i) \left(\frac{\sqrt{3} - 1}{2} + it \right)^2 + \frac{\sqrt{3}}{3}(1 + i) \]

\[= \left(\frac{\sqrt{3}}{6} - i \frac{\sqrt{3}}{6} \right) \left(\left(\frac{\sqrt{3} - 1}{2} \right)^2 + (it)^2 + 2 \frac{\sqrt{3} - 1}{2} it \right) + \frac{\sqrt{3}}{3} + i \frac{\sqrt{3}}{3} \]

\[= \left(\frac{\sqrt{3}}{6} - i \frac{\sqrt{3}}{6} \right) \left(1 - \frac{\sqrt{3}}{2} - t^2 + (\sqrt{3} - 1) it \right) + \frac{\sqrt{3}}{3} + i \frac{\sqrt{3}}{3} \]

\[= \frac{\sqrt{3}}{6} - \frac{1}{4} \frac{\sqrt{3}}{6} t^2 + \frac{\sqrt{3} \left(\sqrt{3} - 1 \right) i t}{6} - i \frac{\sqrt{3}}{6} \frac{1}{4} + i \frac{\sqrt{3}}{6} t^2 + \frac{\sqrt{3} \left(\sqrt{3} - 1 \right) i t}{6} + \frac{\sqrt{3}}{3} + i \frac{\sqrt{3}}{3} \]

\[= \frac{\sqrt{3}}{6} - \frac{1}{4} + \frac{3 - \sqrt{3}}{6} t - \frac{\sqrt{3}}{6} t^2 + i \left(\frac{\sqrt{3}}{6} + \frac{1}{4} + \frac{3 - \sqrt{3}}{6} t + \frac{\sqrt{3}}{6} t^2 \right) \]

3 L’affixe du point A est un point fixe de F ; par conséquent, le point A est sur l’ensemble tracé. Or, \(z_A = \sqrt{2} e^{\frac{5i\pi}{12}} \) donc A appartient au cercle de centre O et de rayon \(\sqrt{2} \), c’est-à-dire au cercle de centre O passant par le point de coordonnées (1; 1). Ainsi, A est le point d’intersection de ce cercle avec l’ensemble tracé, dont l’abscisse est positive.

![Diagram with points labeled A and O](image)

Corrigé de l’exercice 15.

1 \(w^5 = \left(e^{\frac{2\pi}{5}} \right)^5 = e^{\frac{2\pi}{5} \times 5} = e^{2\pi} = 1. \)

\[1 + w + w^2 + w^3 + w^4 = \frac{w^5 - 1}{w - 1} = 0. \]

2 On développe le second membre de l’égalité :

\[\left(z + \frac{1}{z} \right)^2 + \left(z + \frac{1}{z} \right) - 1 = z^2 + 2 + \frac{1}{z^2} + z + \frac{1}{z} - 1 \]

\[= z^2 + \frac{1}{z^2} + z + \frac{1}{z} + 1. \]

Or,

\[\frac{1}{z^2} \left(1 + z + z^2 + z^3 + z^4 \right) = \frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2. \]
On a donc bien :

\[
\frac{1}{z^2} (1 + z + z^2 + z^3 + z^4) = \left(z + \frac{1}{z} \right)^2 + \left(z + \frac{1}{z} \right) - 1
\]

3 a. Le polynôme \(Z^2 + Z - 1\) a pour discriminant :

\[
\Delta = 1^2 - 4 \times 1 \times (-1) = 5.
\]

Il admet donc deux racines distinctes :

\[
Z_1 = \frac{-1 - \sqrt{5}}{2}, \quad Z_2 = \frac{-1 + \sqrt{5}}{2}
\]

b. D’après la question 1,

\[
1 + w + w^2 + w^3 + w^4 = 0,
\]

donc

\[
\frac{1}{w^2} \left(1 + w + w^2 + w^3 + w^4 \right) = 0,
\]

soit, d’après la question 2 :

\[
\left(w + \frac{1}{w} \right)^2 + \left(w + \frac{1}{w} \right) - 1 = 0.
\]

soit :

\[
(e^{i \frac{2\pi}{5}} + e^{-i \frac{2\pi}{5}})^2 + (e^{i \frac{2\pi}{5}} + e^{i \frac{2\pi}{5}}) - 1 = 0.
\]

Or,

\[
e^{i \frac{2\pi}{5}} + e^{-i \frac{2\pi}{5}} = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5} + \cos \left(-\frac{2\pi}{5}\right) + i \sin \left(-\frac{2\pi}{5}\right)
\]

\[
= 2 \cos \frac{2\pi}{5}.
\]

Donc,

\[
\left(2 \cos \frac{2\pi}{5} \right)^2 + 2 \cos \frac{2\pi}{5} - 1 = 0. \quad (1)
\]

\(2 \cos \frac{2\pi}{5}\) est solution de l’équation \(Z^2 + Z - 1 = 0\) donc, d’après la question précédente :

\[
2 \cos \frac{2\pi}{5} = \frac{-1 - \sqrt{5}}{2} \quad \text{ou} \quad 2 \cos \frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{2}
\]

soit

\[
\cos \frac{2\pi}{5} = \frac{-1 - \sqrt{5}}{4} \quad \text{ou} \quad \cos \frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{4}.
\]

Or, \(\cos \frac{2\pi}{5} > 0\) car \(0 < \frac{2\pi}{5} < \frac{\pi}{2}\) d’où :

\[
\cos \frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{4}
\]
4 a. Une équation cartésienne d’un cercle est de la forme :
\[(x - x_O)^2 + (y - y_O)^2 = r^2,\]
où \((x_O; y_O)\) sont les coordonnées du centre et \(r\) son rayon.
Ainsi, une équation cartésienne de \(C\) est :
\[
\left(x + \frac{1}{4}\right)^2 + y^2 = \frac{5}{16}.
\]
En effet,
\[
KA^2 = (x_A - x_K)^2 + (y_A - y_K)^2
= \left(\frac{1}{4}\right)^2 + \left(\frac{1}{2}\right)^2
= \frac{1}{16} + \frac{1}{4}
= \frac{5}{16}.
\]

b. On prend \(y = 0\) dans l’équation du cercle :
\[
\left(x + \frac{1}{4}\right)^2 = \frac{5}{16}
\]
soit
\[
x^2 + \frac{1}{2}x - \frac{1}{4} = 0
\]
équation qui admet \(\cos \frac{2\pi}{5}\) pour unique solution positive d’après l’équation (1) trouvée dans la question 3.b.

c. On trace le cercle \(C\) qui coupe l’axe des abscisses en un point \(M\) d’abscisse positive \(\cos \frac{2\pi}{5}\).
On trace ensuite le cercle unité puis la perpendiculaire à l’axe des abscisses passant par \(M\) :
Corrigé de l’exercice 16.

1 On sait depuis le collège que quatre points A, B, C et D sont cocycliques si et seulement si ils forment deux angles de même mesure qui interceptent le même arc de cercle.

En considérant, comme suggéré dans l’énoncé, les angles \((\overrightarrow{AC}, \overrightarrow{AD})\) et \((\overrightarrow{BC}, \overrightarrow{BD})\), on peut alors écrire :

\[
\begin{align*}
A, B, C, D \text{ cocycliques} & \iff (\overrightarrow{AC}, \overrightarrow{AD}) = (\overrightarrow{BC}, \overrightarrow{BD}) \mod \pi \\
& \iff \text{arg} \left(\frac{d - a}{c - a} \right) = \text{arg} \left(\frac{d - b}{c - b} \right) \mod \pi \\
& \iff \text{arg} \left(\frac{d - a}{c - a} \right) - \text{arg} \left(\frac{d - b}{c - b} \right) = 0 \mod \pi \\
& \iff \text{arg} \left(\frac{d - a}{c - b} \right) = 0 \mod \pi \\
& \iff \text{arg} \left(\frac{d - a}{c - a} \times \frac{c - b}{d - b} \right) = 0 \mod \pi \\
& \iff \text{arg} \left(\frac{(d - a)(c - b)}{(d - b)(c - a)} \right) = 0 \mod \pi
\end{align*}
\]

\[
A, B, C, D \text{ cocycliques} \iff \frac{(d - a)(c - b)}{(d - b)(c - a)} \in \mathbb{R}
\]

2 Calculons :

- \(d - a = 3 + i + \sqrt{10} e^{i \frac{4\pi}{3}} - 4 - 4i\)
 \[
 = 3 + i + \sqrt{10} \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right) - 4 - 4i
 = 3 + i - \frac{\sqrt{10}}{2} - i \frac{\sqrt{30}}{3} - 4 - 4i
 = -1 - \frac{\sqrt{10}}{2} - i \left(\frac{\sqrt{30}}{2} + 3 \right)

 \]

- \(d - b = 3 + i + \sqrt{10} e^{i \frac{4\pi}{3}} - 6 - 2i\)
 \[
 = 3 + i - \frac{\sqrt{10}}{2} - i \frac{\sqrt{30}}{3} - 6 - 2i
 = -3 - \frac{\sqrt{10}}{2} - i \left(\frac{\sqrt{30}}{2} + 1 \right)

 \]

- \(c - b = 2i - 6 - 2i\)
 \[
 = -6
 \]

- \(c - a = 2i - 4 - 4i\)
 \[
 = -4 - 2i
 \]

175
Donc,

\[
\frac{(d - a)(c - b)}{(d - b)(c - a)} = -6 \left[-1 - \frac{\sqrt{10}}{2} - i \left(\frac{\sqrt{30}}{2} + 3 \right) \right]
\]

\[
= \frac{\left[-3 - \frac{\sqrt{10}}{2} - i \left(\frac{\sqrt{30}}{2} + 1 \right) \right] (-4 - 2i)}{6 + 3\sqrt{10} + i(3\sqrt{30} + 18)}
\]

\[
= \frac{12 + 2\sqrt{10} - \sqrt{30} - 2 + i(2\sqrt{30} + 4 + 6 + \sqrt{10})}{10 + 2\sqrt{10} - \sqrt{30} - i(10 + \sqrt{10} + 2\sqrt{30})}
\]

Le numérateur devient :

\[
(6 + 3\sqrt{10})(10 + 2\sqrt{10} - \sqrt{30}) + (3\sqrt{30} + 18)(10 + \sqrt{10} + 2\sqrt{30})
\]

\[
+ i(3\sqrt{30} + 18)(10 + 2\sqrt{10} - \sqrt{30}) - i(10 + \sqrt{10} + 2\sqrt{30})(6 + 3\sqrt{10})
\]

Sa partie imaginaire est :

\[
(30\sqrt{30} + 60\sqrt{3} - 90 + 180 + 36\sqrt{10} - 18\sqrt{30}) - (60 + 30\sqrt{10} + 6\sqrt{10} + 30 + 12\sqrt{30} + 60\sqrt{3})
\]

qui s’annule!

Par conséquent, le numérateur est réel, de même que le dénominateur.

Donc, \(\frac{(d - a)(c - b)}{(d - b)(c - a)} \) est réel, ce qui signifie que A, B, C et D sont cocycliques.

3 On peut constater que :

\[d - (3 + i) = \sqrt{10}e^{4\pi i}\]

donc

\[\arg(d - (3 + i)) = \frac{4\pi}{3}.
\]

D’où :

\[\omega = 3 + i.
\]

4 D’après la question précédente,

\[|d - \omega| = |\sqrt{10}e^{4\pi i}| = \sqrt{10}.
\]

- \[|a - \omega| = |4 + 4i - 3 - i| = |1 + 3i| = \sqrt{10^2 + 3^2} = \sqrt{10}\]
- \[|b - \omega| = |6 + 2i - 3 - i| = |3 + i| = \sqrt{10}\]
\[|c - \omega| = |2i - 3 - i| = | - 3 + i| = \sqrt{10} \]

Ainsi, \(\Omega A = \Omega B = \Omega C = \Omega D = \sqrt{10} \), donc A, B, C et D sont sur le cercle de centre \(\Omega \) et de rayon \(\sqrt{10} \).

5 \((\overrightarrow{OA}, \overrightarrow{OC}) = \arg \left(\frac{c - \omega}{a - \omega} \right) \)
\[= \arg \left(\frac{2i - 3 - i}{4 + 4i - 3 - i} \right) \]
\[= \arg \left(\frac{(-3 + i)(1 - 3i)}{(1 + 3i)(1 - 3i)} \right) \]
\[= \arg \left(\frac{-3 + 3i + 9i}{1 + 9} \right) \]
\[= \arg (i) = \frac{\pi}{2} \]
Le triangle \(A\Omega C \) est donc rectangle en \(\Omega \).

Corrigé de l’exercice 17.

1 \(f(z_A) = \frac{1 - i}{2 + i} \)
\[= \frac{(1 - i)(2 - i)}{(2 + i)(2 - i)} \]
\[= \frac{1 - i - 2i + i^2}{4 + 1} \]
\[\Rightarrow f(z_A) = -\frac{3}{5} \]

2 \(f(z) = z \iff \frac{x + iy}{1 + x + iy} = x + iy \)
\[\iff x - iy = (x + iy)(1 + x + iy) \]
\[\iff x - iy = x(1 + x) + ixy + iy(1 + x) - y^2 \]
\[\iff x - iy = x + x^2 - y^2 + yi(2x + 1) \]
\[\iff x^2 - y^2 + 2yi(x + 1) = 0 \]
\[\iff \begin{cases} x^2 - y^2 = 0 \\ y = 0 \text{ ou } x + 1 = 0 \end{cases} \]
Les invariants de \(f \) sont donc : \(z_1 = 0, z_2 = -1 + i \) et \(z_3 = -1 + i \).

3 a. \(|z_A| = \sqrt{1^2 + 1^2} = \sqrt{2} \).
Donc \(z_A = \sqrt{2} \left(\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) \), soit \(z_A = \sqrt{2} e^{i \pi} \).
b. \[f(z_M) = \frac{\sqrt{2}e^{i\theta}}{1 + \sqrt{2}e^{i\theta}} \]
\[= \frac{\sqrt{2}e^{i\theta}}{1 + \sqrt{2}e^{i\theta}} \left(\frac{1 + \sqrt{2}e^{-i\theta}}{1 + \sqrt{2}e^{-i\theta}} \right) \]
\[= \frac{\sqrt{2}e^{-i\theta} + 2e^{-2i\theta}}{3 + 2\sqrt{2}\cos \theta} \]
\[= \frac{\sqrt{2}\cos \theta + 2\cos(2\theta) - i(\sqrt{2}\sin \theta + 2\sin(2\theta))}{3 + 2\sqrt{2}\cos \theta} \]
\[f(z_M) = \frac{4\cos^2 \theta + \sqrt{2}\cos \theta - 2}{3 + 2\sqrt{2}\cos \theta} - \frac{i\sin(\sqrt{2} + 4\cos \theta)}{3 + 2\sqrt{2}\cos \theta} \]
\[\text{car } \cos(2\theta) = \cos^2 \theta - 1 \text{ et } \sin(2\theta) = 2\sin \theta \cos \theta. \]
\[c. \text{ Remarquons que la partie réelle de } f(z_M) \text{ ne dépend que de } \cos \theta; \text{ donc, elle est paire,} \]
\[\text{ce qui nous pousse à remplacer } \theta \text{ par } -\theta : \text{ on obtient alors :} \]
\[f(\sqrt{2}e^{-i\theta}) = \frac{4\cos^2(-\theta) + \sqrt{2}\cos(-\theta) - 2}{3 + 2\sqrt{2}\cos(-\theta)} - \frac{i\sin(-\theta)(\sqrt{2} + 4\cos(-\theta))}{3 + 2\sqrt{2}\cos(-\theta)} \]
\[= \frac{4\cos^2 \theta + \sqrt{2}\cos \theta - 2}{3 + 2\sqrt{2}\cos \theta} + \frac{i\sin(\sqrt{2} + 4\cos \theta)}{3 + 2\sqrt{2}\cos \theta} \]
\[\text{On constate donc que la partie réelle est inchangée et que la partie imaginaire est} \]
\[\text{devenue son opposée; cela signifie donc que } \mathcal{E} \text{ est symétrique par rapport à l’axe des} \]
\[\text{abscisses.} \]
\[d. \text{ Par symétrie, on obtient :} \]
Énoncés

A Exercices d’application du cours
R Exercices de réflexion
G Exercices corrigés attention pour éviter les erreurs
22 février 2017

Exercice 1. Décomposition en éléments simples de \(f(x) = \frac{1}{x^3 - 2x^2 - 5x + 6} \)

(Source : ts-int-01)

Soit \(f \) une fonction définie par :

\[
f(x) = \frac{1}{x^3 - 2x^2 - 5x + 6}.
\]

1 Montrer que \(\alpha = 1 \) est une racine du polynôme \(x^3 - 2x^2 - 5x + 6 \).
2 En déduire ses deux autres racines, que l’on note \(\beta \) et \(\gamma \), \(\beta < \gamma \).
3 Déterminer les réels \(A \), \(B \) et \(C \) tels que :

\[
f(x) = \frac{A}{x - \alpha} + \frac{B}{x - \beta} + \frac{C}{x - \gamma}.
\]
4 En déduire la valeur de \(\int_{4}^{5} f(x) \, dx \).

Exercice 2. Trouver le cercle

(Source : ts-int-02)

On considère l’intégrale :

\[
I = \int_{0}^{4} \sqrt{4x - x^2} \, dx.
\]

Montrer que \(I \) représente l’aire d’un demi-disque, dont on donnera les caractéristiques, et calculer \(I \).

Exercice 3. Volume d’un bouchon de pêche

(Source : ts-int-03)

Un bouchon de pêche est obtenu à partir d’une courbe que l’on a fait tourner autour de l’axe des abscisses.

\[
\begin{align*}
\{ \ f(x) = \sqrt{1 - x^2} \, , \, x \in [-1; 0] \ \\
\{ \ f(x) = \cos(x) \, , \, x \in \left[0 ; \frac{\pi}{2}\right] \end{align*}
\]

L’équation de la courbe est :
Calculer la valeur du volume \mathcal{V} du bouchon.

Exercice 4. Suite et intégrale : $I_n = \int_0^1 \frac{e^{nx}}{e^x + 1} \, dx$

(Source : ts-int-04)

On considère la suite (I_n) définie pour tout entier naturel n par :

$$\int_0^1 \frac{e^{nx}}{e^x + 1} \, dx.$$

1. Calculer I_1 et $I_0 + I_1$. En déduire I_0.
2. Exprimer $I_n + I_{n+1}$ pour tout entier naturel non nul n.

Corrigé page 186

3. Montrer que (I_n) est croissante.
4. Montrer que pour tout réel x compris entre 0 et 1, on a :

$$\frac{e^{nx}}{e + 1} \leq \frac{e^{nx}}{e^x + 1} \leq \frac{1}{2} e^{nx}.$$

En déduire un encadrement de I_n.

5. En déduire $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} e^n I_n$.

Exercice 5. Intégrale et suite définie par $u_n = \frac{\ln(n!)}{\ln(n^n)}$

(Source : ts-int-05)

1. Montrer que pour tout entier naturel n supérieur à 1, on a :

$$\int_1^n \ln t \, dt \leq \ln(n!) \leq \int_1^{n+1} \ln t \, dt.$$

2. Montrer que la fonction L définie par $L(x) = x \ln x - x$ est une primitive de la fonction $x \mapsto \ln x$.

3. On considère la suite $(u_n)_{n \geq 2}$ définie :

$$u_n = \frac{\ln(n!)}{\ln(n^n)}.$$

Montrer que $(u_n)_{n \geq 2}$ converge et donner sa limite.

Exercice 6. Suite définie par une intégrale

(Source : ts-int-09)

On considère la suite (u) définie pour tout entier naturel n par :

$$u_n = \int_1^{e^2} \frac{(\ln x)^n}{x^2} \, dx.$$

1. On considère la fonction $F_n(x) = \frac{(\ln x)^{n+1}}{x}$.

Montrer que $F'_n(x) = (n+1) \frac{(\ln x)^n}{x^2} - \frac{(\ln x)^{n+1}}{x^2}$.

2. En déduire que $u_{n+1} = -\frac{2^{n+1}}{e^2} + (n+1)u_n$.

180
3 Montrer par récurrence que pour tout entier naturel non nul \(n \), on a :
\[
u_n = n!u_0 - \frac{n!}{e^2} \sum_{k=1}^{n} \frac{2^k}{k!}\]

4 En déduire que \(\lim_{n \to +\infty} \left(\frac{u_n}{n!} \right) = 0 \).

Exercice 7. \(\int_0^{\pi/2} e^{-nx} \sin x \, dx \) et \(\int_0^{\pi/2} e^{-nx} \cos x \, dx \)

(Source : ts-int-10)

On considère les intégrales suivantes, définies pour tout entier naturel \(n \) :
\[
I_n = \int_0^{\pi/2} e^{-nx} \sin x \, dx \quad ; \quad J_n = \int_0^{\pi/2} e^{-nx} \cos x \, dx
\]

1 Calculer \(I_0 \) et \(J_0 \).

2 Soit \(n \) un entier naturel non nul.
 a. On pose \(F_n(x) = -e^{-nx} \sin x \).
 Calculer \(F'_n(x) \) et en déduire que :
 \[
 nI_n - J_n = -e^{-n\pi/2}.
 \]
 b. On pose \(G_n(x) = -e^{-nx} \cos x \).
 Calculer \(G'_n(x) \) et en déduire que :
 \[
 I_n + nJ_n = 1.
 \]
 c. En déduire la valeur de \(I_n \) et \(J_n \) en fonction de \(n \).

3 Calculer \(\lim_{n \to +\infty} I_n \) et \(\lim_{n \to +\infty} J_n \).

Exercice 8. \(\phi(x) = \int_1^{x} \frac{\ln t}{(1+t)^3} \, dt \)

(Source : ts-int-11)

On considère la fonction \(\phi \) définie sur \([1; +\infty[\) par :
\[
\phi(x) = \int_1^{x} \frac{\ln t}{(1+t)^3} \, dt.
\]

1 Justifier l'existence de \(\phi \).

2 Montrer que \(\frac{1}{t(t+1)^2} = \frac{a}{t} + \frac{b}{t+1} + \frac{c}{(t+1)^2} \), où \(a, b \) et \(c \) sont trois réels que l'on précisera.
3 Soit $x \geq 1$.

 \(a\). Exprimer en fonction de x la valeur de $\int_1^x \frac{dt}{t(t+1)^2}$.

 \(b\). On pose $\Phi(t) = -\frac{\ln t}{2(t+1)^2}$.

 Calculer $\Phi'(t)$ et en déduire une expression de $\phi(x)$ en fonction de x.

 \(c\). Montrer que $\lim_{x \to +\infty} \frac{\ln x}{(1+x)^2} = 0$.

 En déduire que :

 $\lim_{x \to +\infty} \phi(x) = -\frac{1}{2} \left(\ln 2 - 1 \right)$.

\textbf{Exercice 9. Approximation d'une aire}

(Source : ts-int-12)

L'objectif de cet exercice est de déterminer une approximation de l'aire du domaine \mathcal{D} défini par :

$$\mathcal{D} = \{0 \leq x \leq 1, 0 \leq y \leq f(x)\}$$

où

$$\forall x \in \mathbb{R}, \quad f(x) = (\ln(1+x))^2.$$

On note \mathcal{C} la courbe représentative de f dans un repère orthonormé $(O ; \vec{i}, \vec{j})$, avec pour unité graphique : $\|\vec{i}\| = \|\vec{j}\| = 10$ cm.

\textbf{Partie A : Étude des variations de la fonction}

1. Déterminer la dérivée de f sur $[0 ; +\infty[.$
2. En déduire les variations de f sur $[0 ; +\infty[.$
3. Calculer $f(0)$ et $f(1)$, puis dresser le tableau de variations de f sur $[0 ; 1].$
4. Calculer $f'(0)$. En déduire l’équation de la tangente \mathcal{T} à \mathcal{C} au point d’abscisse 0.
5. Tracer dans $(O ; \vec{i}, \vec{j})$ \mathcal{C} en faisant apparaître la tangente \mathcal{T}.

\textbf{Partie B : Calcul de l’approximation de l’aire}

On considère :

- Les points $A_k \left(\frac{k}{10} ; 0\right)$ pour tout entier naturel k tel que $0 \leq k \leq 10$;

- Les rectangles R_k de base $[A_kA_{k+1}]$ et de hauteur $f \left(\frac{k}{10}\right)$ pour tout entier naturel k tel que $0 \leq k \leq 9$.

1. Sur le graphique précédent, dessiner les rectangles R_k, $0 \leq k \leq 9$.
2. Calculer la somme des aires des rectangles R_k pour k compris entre 0 et 9. On donnera le résultat en unité d’aire et en cm2 à 10^{-3} près.
3. On suppose que la fonction F définie par :

 $$F(x) = (x + 1) \left[(\ln(x + 1))^2 - 2\ln(x + 1) + 2\right]$$

 est une primitive de f sur $[0 ; 1]$.

 En déduire la valeur exacte, puis approchée à 10^{-3} près, de l’aire de \mathcal{D}.

 Calculez l’erreur entre cette valeur et celle obtenue à la question précédente.
Exercice 10. Intégrale et fonction exponentielle
(Source : ts-int-13)

On considère sur $[0 ; +\infty[$ la fonction f_n telle que :

$$f_n(x) = x^n e^x, \quad n \in \mathbb{N}.$$

On pose alors, pour tout réel x positif,

$$F_n(x) = \int_0^x f_n(t) \, dt.$$

1 Montrer que pour tout entier naturel $n \geq 1$, $F_n(x) = x^n e^x - nF_{n-1}(x)$.

2 En déduire que pour tout entier naturel n,

$$F_n(x) = e^x \sum_{k=0}^{n} \frac{(-1)^k n^k}{(n-k)!} x^{n-k},$$

où $n!$ désigne le produit $1 \times 2 \times 3 \times 4 \times \cdots \times (n-2) \times (n-1) \times n$ et où l’on convient de noter que $0! = 1$.

Exercice 11. Suite et intégrale
(Source : ts-int-14)

1 On considère deux fonctions u et v dérivables sur un intervalle $[a ; b]$. On pose alors $f(x) = u(x)v(x)$.

À l’aide de $f'(x)$, montrer que :

$$\int_a^b u'(x)v(x) \, dx = f(b) - f(a) - \int_a^b u(x)v'(x) \, dx.$$

On considère la suite (I_n) définie pour tout entier naturel n par :

$$I_n = \int_1^n (\ln x)^n \, dx.$$

2 Pour tout entier naturel n, quel est le signe de I_n ?

3 Montrer que (I_n) est décroissante. Que peut-on alors en déduire ?

4 En écrivant $(\ln x)^n$ sous la forme $x \times \frac{1}{x}(\ln x)^n$ et à l’aide de la question 1, montrer que pour tout entier naturel n :

$$I_{n+1} + (n + 1)I_n = e.$$

5 a. En considérant cette dernière relation de récurrence pour $n = 0$ et $n = 1$, montrer que $I_2 = I_0 - I_1$.

b. Calculer I_0.

c. Montrer que la fonction L définie par $L(x) = x \ln x - x$ est une primitive de la fonction $\ln x$.

En déduire la valeur de I_1, puis celle de I_2.

183
Corrigé de l’exercice 1.

1 Soit \(P(x) = x^3 - 2x^2 - 5x + 6 \). Alors, \(P(1) = 1^3 - 2 \times 1^2 - 5 \times 1 + 6 = 0 \).
 Ainsi, \(\alpha = 1 \) est une racine de \(P \).

2 De la question précédente, on peut conclure que \(P(X) = (x - 1)(x^2 + bx + c) \).
 En développant, on a : \(P(x) = x^3 + bx^2 + cx - x^2 - bx - c = x^3 + (b - 1)x^2 + (c - b)x - c \).
 Par identification, on a alors :
 \[
 \begin{cases}
 b - 1 = -2 \\
 c - b = -5 \\
 -c = 6
 \end{cases}
 \]
 Soit \(b = -1 \) et \(c = -6 \). Ainsi, \(P(x) = (x - 1)(x^2 - x - 6) \).
 Le discriminant du second facteur est \(\Delta = 25 \), d’où les racines suivantes :
 \[
 \beta = \frac{1 - \sqrt{\Delta}}{2} = -2 \quad \text{et} \quad \gamma = \frac{1 + \sqrt{\Delta}}{2} = 3
 \]
 Les trois racines de \(P \) sont donc \(\alpha = 1 \), \(\beta = -2 \) et \(\gamma = 3 \).

3 Déterminons les réels \(A \), \(B \) et \(C \) tels que :

\[
 f(x) = \frac{1}{(x - 1)(x + 2)(x - 3)} = A \frac{x}{x - 1} + B \frac{x}{x + 2} + C \frac{x}{x - 3}
\]

- \((x - 1)f(x) = \frac{1}{(x + 2)(x - 3)} = A + B(x - 1) + C(x - 1) \).
 Si \(x = 1 \), cela nous donne : \(\frac{1}{-6} = A \).

- \((x + 2)f(x) = \frac{1}{(x - 1)(x - 3)} = A(x + 2) + B(x + 2) + C(x + 2) \).
 Si \(x = -2 \), cela nous donne : \(\frac{1}{15} = B \).

- \((x - 3)f(x) = \frac{1}{(x - 1)(x + 2)} = A(x - 3) + B(x - 3) + C \).
 Si \(x = 3 \), cela nous donne : \(\frac{1}{10} = C \).

Ainsi :

\[
 f(x) = \frac{-1}{6(x - 1)} + \frac{1}{15(x + 2)} + \frac{1}{10(x - 3)}
\]
\[\int_{4}^{5} f(x) \, dx = -\frac{1}{6} \int_{4}^{5} \frac{dx}{x - 1} + \frac{1}{15} \int_{4}^{5} \frac{dx}{x + 2} + \frac{1}{10} \int_{4}^{5} \frac{dx}{x - 3} \]

\[= -\frac{1}{6} \left[\ln(x - 1) \right]_{4}^{5} + \frac{1}{15} \left[\ln(x + 2) \right]_{4}^{5} + \frac{1}{10} \left[\ln(x - 3) \right]_{4}^{5} \]

\[= -\frac{1}{6} \left(\ln 4 - \ln 3 \right) + \frac{1}{15} \left(\ln 7 - \ln 6 \right) + \frac{1}{10} \left(\ln 2 - \ln 1 \right) \]

\[= \frac{1}{6} \ln 3 - \frac{1}{30} \ln 2 + \frac{1}{15} \ln 7 \]

\[= \frac{1}{30} \ln \left(\frac{147}{512} \right) \]

Corrigé de l’exercice 2. Considérons la fonction \(f(x) = \sqrt{4x - x^2} \) définie sur \([0 ; 4] \).
Sa représentation graphique est un demi-cercle de centre \(A(2; 0) \) situé au-dessus de l’axe des abscisses.
En effet, on a :

\[
\begin{align*}
 y &= \sqrt{4x - x^2}, \quad y \geq 0 \\
 y^2 &= 4x - x^2, \quad y \geq 0 \\
 0 &= x^2 - 4x + y^2, \quad y \geq 0 \\
 0 &= (x - 2)^2 - 4 + y^2, \quad y \geq 0 \\
 4 &= (x - 2)^2 + y^2, \quad y \geq 0
\end{align*}
\]

Cette dernière équation cartésienne est celle du demi-cercle de centre \(A(2; 0) \) et de rayon \(r = 2 \).
Ainsi, \(I \) représente l’aire de ce demi-cercle. Donc \(I = \frac{\pi r^2}{2} \) soit \(I = 2\pi \).

Corrigé de l’exercice 3. Par définition :

\[
V = \pi \int_{-1}^{2} (f(x))^2 \, dx \\
= \pi \int_{-1}^{0} (f(x))^2 \, dx + \pi \int_{0}^{2} (f(x))^2 \, dx
\]

volume de la demi sphère de rayon 1

\[
= \frac{2\pi}{3} + \pi \int_{0}^{2} \cos^2 x \, dx \\
= \frac{2\pi}{3} + \pi \left[\frac{1}{2} \cos 2x + \frac{1}{2} x \right]_{0}^{2} \\
= \frac{2\pi}{3} + \frac{\pi^2}{4}
\]

185
Corrigé de l’exercice 4.

1. a. $I_1 = \int_0^1 \frac{e^x}{e^x+1} \, dx = \left[\ln(e^x+1) \right]_0^1 = \ln(e+1) - \ln 2$.

 Ainsi, $I_1 = \ln \left(\frac{e+1}{2} \right)$.

 $I_0 + I_1 = \int_0^1 \frac{e^x + 1}{e^x + 1} \, dx = [x]_0^1$.

 Ainsi, $I_0 + I_1 = 1$.

 On en déduit alors : $I_0 = 1 - I_1$, soit $I_0 = 1 - \ln \left(\frac{e+1}{2} \right)$.

 b. $I_n + I_{n+1} = \int_0^1 \frac{e^{nx} + e^{(n+1)x}}{e^x + 1} \, dx$.

 $= \int_0^1 \frac{e^{nx}(e^x + 1)}{e^x + 1} \, dx$.

 $= \int_0^1 e^{nx} \, dx$.

 $= \frac{1}{n} [e^{nx}]_0^1$.

 Ainsi, $I_n + I_{n+1} = \frac{1}{n} (e^n - 1)$.

2. a. $I_{n+1} - I_n = \int_0^1 \frac{e^{nx}(e^x - 1)}{e^x + 1} \, dx$.

 Or, sur $[0; 1]$, on a :

 $\begin{cases} e^{nx} \geq 0 \\
 e^x - 1 \geq 0 \\
 e^x + 1 \geq 0
 \end{cases}$

 Ainsi, $I_{n+1} - I_n \geq 0$ donc (I_n) est croissante.

 b. $0 \leq x \leq 1 \iff e^0 \leq e^x \leq e^1$ car $t \mapsto e^t$ est croissante

 $\iff 1 + 1 \leq e^x + 1 \leq e + 1$

 $\iff \frac{1}{e + 1} \leq \frac{1}{e^x + 1} \leq \frac{1}{2}$

 $\iff \frac{e^{nx}}{e + 1} \leq \frac{e^{nx}}{e^x + 1} \leq \frac{1}{2} e^{nx}$ car $e^{nx} > 0$

 $\iff \frac{1}{e + 1} \int_0^1 e^{nx} \, dx \leq \int_0^1 \frac{e^{nx}}{e^x + 1} \, dx \leq \frac{1}{2} \int_0^1 e^{nx} \, dx$

 $\iff \frac{e^n - 1}{n(e + 1)} \leq I_n \leq \frac{e^n - 1}{2(e + 1)}$.

3. On sait (croissance comparée) que $\lim_{n \to +\infty} \frac{e^n}{n} = +\infty$. Ainsi, $\lim_{n \to +\infty} \frac{e^n - 1}{n(e + 1)} = +\infty$.

 De plus, $\lim_{n \to +\infty} \frac{e^n - 1}{2(e + 1)} = +\infty$.

 Ainsi, d’après le théorème des gendarmes, $\lim_{n \to +\infty} I_n = +\infty$.

 De plus, $\frac{1 - e^{-n}}{n(e + 1)} \leq I_n e^{-n} \leq \frac{1 - e^{-n}}{2(e + 1)}$ et $\lim_{n \to +\infty} \frac{1 - e^{-n}}{n(e + 1)} = \lim_{n \to +\infty} \frac{1 - e^{-n}}{2(e + 1)} = 0$.

186
Ainsi, \(\lim_{n \to +\infty} \frac{I_n}{e^n} = 0. \)

Corrigé de l’exercice 5.

1. Dans un premier temps, remarquons que :

\[
\ln(n!) = \ln(1 \times 2 \times 3 \times \cdots \times (n-1) \times n) = \ln 1 + \ln 2 + \ln 3 + \cdots + \ln(n-1) + \ln n
\]

Traçons la courbe représentative de la fonction \(t \mapsto \ln t \) sur \([1; +\infty[\) et traçons les rectangles de largeur 1 et de hauteur respective \(\ln k \) et \(\ln(k+1) \) pour \(k \) allant de 1 à \(n \) :

On voit ici que la somme des aires des rectangles est supérieure à l’aire comprise entre la courbe, l’axe des abscisses, le point de coordonnées \((1; 0)\) et la droite d’équation \(x = n \), ce qui se traduit par l’inégalité suivante :

\[
\int_1^n \ln t \, dt \geq \ln(n!) \leq \int_1^{n+1} \ln t \, dt
\]

Ainsi :

\[
\int_1^n \ln t \, dt \leq \ln(n!) \leq \int_1^{n+1} \ln t \, dt
\]

2. \(L'(x) = (x \ln x)' - 1 \)

\[
= 1 \times \ln x + x \times \frac{1}{x} - 1
\]

\[
= \ln x + 1 - 1
\]

\[
= \ln x.
\]

Ainsi, \(x \mapsto x \ln x - x \) est bien une primitive de \(x \mapsto \ln x \).

3. De l’encadrement de la question 1 et du résultat obtenu à la question 2, on déduit :

\[
\frac{1}{n} \ln(n^n) \int_1^n \ln t \, dt \leq u_n \leq \frac{1}{n} \ln(n^{n+1}) \int_1^{n+1} \ln t \, dt.
\]

Or,

\[
\int_1^n \ln t \, dt = [t \ln t - t]_1^n = n \ln n - n + 1
\]

\[
\int_1^{n+1} \ln t \, dt = [t \ln t - t]_1^{n+1} = (n+1) \ln(n+1) - n
\]

Donc :

\[
\frac{n \ln n - n + 1}{n \ln n} \leq u_n \leq \frac{n \ln(n+1) + \ln(n+1) - n}{n \ln n}
\]

\[
1 - \frac{1}{\ln n} + \frac{1}{n \ln n} \leq u_n \leq \frac{\ln(n+1)}{\ln n} \left(1 + \frac{1}{n}\right) - \frac{1}{\ln n}
\]
Or : \[
\frac{\ln(n+1)}{\ln n} = \frac{\ln \left(n \left(1 + \frac{1}{n} \right) \right)}{\ln n} = \ln n + \ln \left(1 + \frac{1}{n} \right) = 1 + \frac{\ln \left(1 + \frac{1}{n} \right)}{\ln n}.
\]
De plus :
\[
\lim_{n \to +\infty} \frac{1}{\ln n} = 0 ; \quad \lim_{n \to +\infty} \frac{1}{n \ln n} = 0 ; \quad \lim_{n \to +\infty} \frac{\ln(n+1)}{\ln n} = 1 + \lim_{n \to +\infty} \frac{\ln \left(1 + \frac{1}{n} \right)}{\ln n} = 1
\]
D’après le théorème des gendarmes, on a alors :
\[
\lim_{n \to +\infty} u_n = 1
\]

Corrigé de l’exercice 6.

1. \(F_n(x)\) est de la forme \(u(x) \times v(x)\) avec \(u(x) = (\ln x)^{n+1}\) et \(v(x) = \frac{1}{x}\). Ainsi,
\[
F_n'(x) = (n+1)\frac{1}{x} (\ln x)^n \times \frac{1}{x} - \frac{1}{x^2} \times (\ln x)^{n+1}
\]
\[
= (n+1) \frac{(\ln x)^n}{x^2} - \frac{(\ln x)^{n+1}}{x^2}.
\]

De la question précédente, on déduit :
\[
\int_1^{e^2} F_n'(x) \, dx = \int_1^{e^2} \left((n+1) \frac{(\ln x)^n}{x^2} - \frac{(\ln x)^{n+1}}{x^2} \right) \, dx
\]
\[
= (n+1) \int_1^{e^2} \frac{(\ln x)^n}{x^2} \, dx - \int_1^{e^2} \frac{(\ln x)^{n+1}}{x^2} \, dx.
\]
D’où :
\[
\int_1^{e^2} \frac{(\ln x)^{n+1}}{x^2} \, dx = (n+1) \int_1^{e^2} \frac{(\ln x)^n}{x^2} \, dx - \int_1^{e^2} F_n'(x) \, dx
\]
\[
u_{n+1} = (n+1)u_n - \left[F_n(e^2) - F_n(0) \right]
\]
\[
\boxed{u_{n+1} = (n+1)u_n - \frac{2^{n+1}}{e^2}}
\]

2. Posons \(P_n\) la propriété : \(\forall n \in \mathbb{N}^*, u_n = n!u_0 - \frac{n!}{e^2} \sum_{k=1}^{n} \frac{2^k}{k!}\).

• Initialisation.
 Pour \(n = 1\), la question 2 nous dit que : \(u_1 = u_0 - \frac{2}{e^2}\).
 De plus, \(P_1 : u_1 = 1!u_0 - \frac{1!}{e^2} \times \frac{2}{1!} = u_0 - \frac{2}{e^2}\).
 L’initialisation est donc faite.

• Hérédité.
 Supposons que \(P_n\) soit vraie pour un \(n\) donné non nul. Alors, \(u_n = n!u_0 - \frac{n!}{e^2} \sum_{k=1}^{n} \frac{2^k}{k!}\).
 D’après la question 2, on a :

188
\[u_{n+1} = (n+1)u_n - \frac{2^{n+1}}{e^2} \]

\[= (n+1) \left(n!u_0 - \frac{n!}{e^2} \sum_{k=1}^{n} \frac{2^k}{k!} \right) - \frac{2^{n+1}}{e^2} \]

\[= (n+1)!u_0 - \frac{(n+1)!}{e^2} \sum_{k=1}^{n} \frac{2^k}{k!} - \frac{2^{n+1}}{e^2} \]

\[= (n+1)!u_0 - \frac{(n+1)!}{e^2} \left(\sum_{k=1}^{n} \frac{2^k}{k!} + \frac{2^{n+1}}{(n+1)!} \right) \]

\[= (n+1)!u_0 - \frac{(n+1)!}{e^2} \sum_{k=1}^{n+1} \frac{2^k}{k!} \]

On a alors \(P_n \Rightarrow P_{n+1} \). L’hérédité est alors montrée.

Ainsi, \(P_n \) est vraie pour tout entier naturel non nul \(n \).

4 De la question précédente, on peut déduire que pour tout entier naturel non nul \(n \), on a :

\[\frac{u_n}{n!} = u_0 - \frac{1}{e^2} \sum_{k=1}^{n} \frac{2^k}{k!} \]

Soit :

\[\lim_{n \to +\infty} \frac{u_n}{n!} = u_0 - \frac{1}{e^2} \sum_{k=1}^{+\infty} \frac{2^k}{k!} \]

Or, d’après un exercice précédent, on sait que :

\[\sum_{k=0}^{+\infty} \frac{2^k}{k!} = e^2. \]

Donc :

\[\sum_{k=0}^{+\infty} \frac{2^k}{k!} = e^2 - 1, \]

d’où :

\[\lim_{n \to +\infty} \frac{u_n}{n!} = u_0 - \frac{1}{e^2}(e^2 - 1), \]

soit :

\[\lim_{n \to +\infty} \left(\frac{u_n}{n!} \right) = u_0 - 1 + \frac{1}{e^2}, \]

Or :

\[u_0 = \int_{1}^{e^2} \frac{dx}{x^2} \]

\[= \left[-\frac{1}{x} \right]_{1}^{e^2} \]

\[= -\frac{1}{e^2} + 1 \]

Ainsi :

\[\lim_{n \to +\infty} \left(\frac{u_n}{n!} \right) = 0 \]
Corrigé de l’exercice 7.

1. \(I_0 = \int_0^{\pi/2} \sin x \, dx = \left[-\cos x \right]_0^{\pi/2} = \cos 0 - \left(-\cos \frac{\pi}{2} \right) = 1. \)

\(J_0 = \int_0^{\pi/2} \cos x \, dx = \left[\sin x \right]_0^{\pi/2} = \sin 0 - \sin \frac{\pi}{2} = 1. \)

2. a. \(F'_n(x) = ne^{-nx} \sin x - e^{-nx} \cos x. \)

Ainsi,

\[\int_0^{\pi/2} F'_n(x) \, dx = n \int_0^{\pi/2} e^{-nx} \sin x \, dx - e^{-nx} \cos x \, dx \]

\[= -e^{-\frac{\pi}{2}} = nI_n - J_n \]

b. \(G'_n(x) = ne^{-nx} \cos x + e^{-nx} \sin x. \)

Ainsi,

\[\int_0^{\pi/2} G'_n(x) \, dx = n \int_0^{\pi/2} e^{-nx} \cos x \, dx + \int_0^{\pi/2} e^{-nx} \sin x \, dx \]

\[= 1 = nJ_n + I_n \]

c. On a :

\[\begin{cases} I_n + nJ_n = 1 & (E_1) \\ -nI_n + J_n = e^{-n\frac{\pi}{2}} & (E_2) \end{cases} \]

En faisant \((E_1) - n(E_2),\) on a :

\[(1 + n^2)I_n = 1 - ne^{-n\frac{\pi}{2}} \]

D'où :

\[I_n = \frac{1 - ne^{-n\frac{\pi}{2}}}{1 + n^2} \]

De plus, en faisant \((E_2) + n(E_1),\) on a :

\[(1 + n^2)J_n = e^{-n\frac{\pi}{2}} + n, \]

d'où :

\[J_n = \frac{n + e^{-\frac{n\pi}{2}}}{1 + n^2} \]

3. \(\lim_{n \to +\infty} \left(-n\frac{\pi}{2} e^{-\frac{n\pi}{2}} \right) = 0 \) donc \(\lim_{n \to +\infty} I_n = \lim_{n \to +\infty} \frac{1}{1 + n^2} = 0. \)

De même, \(\lim_{n \to +\infty} J_n = \lim_{n \to +\infty} \frac{n}{1 + n^2} = 0. \)

Corrigé de l’exercice 8.

1. La fonction \(t \mapsto \frac{\ln t}{(1 + t)^3} \) est continue sur \([1; +\infty[\) comme quotient de deux fonctions continues sur ce même intervalle. Ainsi, \(\phi \) est définie.

2. On a :

\[\frac{a}{t} + \frac{b}{1 + t} + \frac{c}{(1 + t)^2} = \frac{a(1 + t)^2 + bt(1 + t) + ct}{t(1 + t)^2} = \frac{a(t^2 + 2t + 1) + bt + bt^2 + ct}{t(1 + t)^2} = \frac{(a + b)t^2 + (2a + b + c)t + a}{t(1 + t)^2} \]
Si l’on veut que cette dernière expression soit égale à \(\frac{4}{t(1+t)^2} \), alors, on a :

\[
\begin{cases}
a + b = 0 \\
2a + b + c = 0 \\
a = 1
\end{cases}
\]

Soit \(a = 1 \), \(b = -1 \) et \(c = -1 \) d’où :

\[
\frac{1}{t(1+t)^2} = \frac{1}{t} - \frac{1}{1+t} - \frac{1}{(1+t)^2}
\]

3. a. D’après ce qui précède, on a :

\[
\int_1^x \frac{dt}{t(1+t)^2} = \int_1^x \frac{dt}{t} - \int_1^x \frac{dt}{1+t} - \int_1^x \frac{dt}{(1+t)^2}
\]

\[
= [\ln t]^x_1 - [\ln(1+t)]^x_1 - \left[-\frac{1}{1+t} \right]^x_1
\]

\[
= \ln x - \ln(x+1) + \ln 2 + \frac{1}{1+x} - \frac{1}{2}
\]

\[
= \ln \left(\frac{x}{x+1} \right) + \frac{1}{x+1} + \ln 2 - \frac{1}{2}
\]

b. \(\Phi'(t) = -\frac{1}{t} \times 2(t+1)^2 + \ln t \times 4(t + 1) \)

\[
= \frac{-2(t + 1)^2 + 4(t + 1) \ln t}{4(t + 1)^4}
\]

\[
\Phi'(t) = \frac{\ln t}{(t + 1)^3} - \frac{1}{2t(t + 1)^2}
\]

On déduit alors :

\[
\int_1^x \Phi'(t) \ dt = \int_1^x \frac{\ln t}{(t + 1)^3} \ dt - \frac{1}{2} \int_1^x \frac{1}{t(t + 1)^2} \ dt
\]

\[
\Phi(x) - \Phi(1) = \phi(x) - \frac{1}{2} \left(\ln \left(\frac{x}{x+1} \right) + \frac{1}{x+1} + \ln 2 - \frac{1}{2} \right)
\]

\[
\phi(x) = \frac{1}{2} \ln \left(\frac{x}{x+1} \right) + \frac{1}{2x+2} + \frac{1}{2} \ln 2 - \frac{1}{4} + \Phi(x)
\]

\[
\phi(x) = \frac{1}{2} \ln \left(\frac{x}{x+1} \right) + \frac{1}{2x+2} + \frac{1}{2} \ln 2 - \frac{1}{4} - \frac{\ln x}{2(x+1)^2}
\]

c. On sait, par croissance comparée, que \(\lim_{x \to +\infty} \ln \frac{x}{x} = 0 \).

De plus, \(\lim_{x \to +\infty} \frac{x}{(1+x)^2} = \lim_{x \to +\infty} \frac{x}{x^2} = \lim_{x \to +\infty} \frac{1}{x} = 0 \).

Ainsi, \(\lim_{x \to +\infty} \ln \frac{x}{x} \times \frac{x}{(x+1)^2} = 0 \).

D'où, \(\lim_{x \to +\infty} \frac{\ln x}{(x+1)^2} = 0 \).
On en déduit alors :

\[
\lim_{x \to +\infty} \phi(x) = \lim_{x \to +\infty} \left(-\frac{\ln x}{2(x+1)^2}\right) + \lim_{x \to +\infty} \left(\frac{1}{2} \ln \left(\frac{x}{x+1}\right)\right) + \lim_{x \to +\infty} \left(\frac{1}{2x+2}\right) + \frac{1}{2} \left(\ln 2 - \frac{1}{2}\right) = 0
\]

\[
\lim_{x \to +\infty} \left(\frac{1}{2} \ln \left(\frac{x}{x+1}\right)\right) = 0
\]

\[
\lim_{x \to +\infty} \left(\frac{1}{2x+2}\right) = 0
\]

\[
\lim_{x \to +\infty} \left(\ln 2 - \frac{1}{2}\right) = \frac{1}{2} \left(\ln 2 - \frac{1}{2}\right)
\]

■ Corrigé de l’exercice 9.

Partie A : Étude des variations de la fonction

1. \(f\) est de la forme \(u^2\), avec \(u(x) = \ln(x+1)\).

 Donc \(f' = 2u'u\), avec \(u'(x) = \frac{1}{x+1}\).

 D'où :

 \[
f'(x) = \frac{2 \ln(x+1)}{x+1} .
\]

2. Si \(x \geq 0\), alors \(x + 1 \geq 1\) et donc \(\ln(x+1) \geq 0\).

 Ainsi, \(f'(x)\) est strictement positive donc \(f\) est strictement croissante sur \([0 ; +\infty[\).

3. \(f(0) = (\ln(0+1))^2 = 0\) et \(f(1) = (\ln(1+1))^2 = \ln 2\). On a le tableau de variations suivant :

 \[
 \begin{array}{ccc}
 x & 0 & 1 \\
 f & 0 & \rightarrow \ln 2 \\
 \end{array}
 \]

4. \(f'(0) = \frac{2 \ln(0+1)}{0+1} = 0\) donc la tangente à \(C\) en 0 est horizontale. Or, \(f(0) = 0\) donc \(T\) est l’axe des abscisses.

5.

![Diagramme](image_url)
Partie B : Calcul de l’approximation de l’aire

1 L’aire du rectangle R_k est :

$$A_k = \frac{1}{10} \times f\left(\frac{k}{10}\right),$$

où $\frac{1}{10}$ représente la mesure de la largeur et $f\left(\frac{k}{10}\right)$ sa longueur.

La somme des aires des rectangles est :

$$A = \sum_{k=0}^{9} \frac{1}{10} \times f\left(\frac{k}{10}\right)$$

$$= \frac{1}{10} (f(0) + f(1) + \cdots + f(9))$$

$$A \approx 0,165 \text{ u.a.}$$

$$\approx 0,165 \times 100 \text{ cm}^2$$

$$A \approx 16,487 \text{ cm}^2$$

2 $\int_0^1 f(x) \, dx = F(1) - F(0)$

$$= 2(\ln 2)^2 - 4 \ln 2 + 4$$

$$\approx 0,188$$

L’aire de \mathcal{D} est donc égale à $2(\ln 2)^2 - 4 \ln 2 + 4 \text{ u.a.}$, soit environ 0,188 u.a.

3 **Corrigé de l’exercice 10.**

On sait, par propriété, que :

$$\left(\int_a^x f(t) \, dt\right)' = f(x).$$
Donc ici, pour \(n \geq 1 \),

\[
(x^n e^x - nF_{n-1}(x))' = nx^{n-1}e^x + x^n e^x - nF_{n-1}'(x)
\]

\[
= nx^{n-1}e^x + x^n e^x - nf_{n-1}(x)
\]

\[
= nx^{n-1}e^x + x^n e^x - nx^{n-1}e^x
\]

\[
= x^n e^x
\]

\[
= f_n(x)
\]

On a donc bien \(F_n(x) = x^n e^x - nF_{n-1}(x) \) pour \(n \geq 1 \).

2 Raisonnons par récurrence.

- **Initialisation.**

Pour \(n = 0 \), la formule devient :

\[
F_0(x) = e^x \sum_{k=0}^{0} \frac{(-1)^0-k!}{(0-k)!}x^{0-k}
\]

\[
= e^x \times \frac{(-1)^0}{0!}x^0
\]

\[
= e^x
\]

L’initialisation est donc faite.

- **Hérité.**

Supposons que la formule est vraie pour un entier \(n \) donné, et montrons qu’elle l’est alors au rang suivant.

D’après la question 1,

\[
F_{n+1}(x) = x^{n+1} e^x - (n+1)F_n(x)
\]

\[
= x^{n+1} e^x - (n+1)e^x \sum_{k=0}^{n} \frac{(-1)^k}{(n-k)!}x^{n-k}
\]

par H.R.

\[
= e^x \left(\sum_{k=0}^{n} \frac{(-1)^{k+1}}{(n-k)!}x^{n-k} + x^{n+1} \right)
\]

\[
= e^x \left[(n+1)! x^{n+1} + \frac{(-1)^1}{1!}x^n + \frac{(-1)^2}{2!}x^{n-1} + \ldots \right]
\]

\[
= e^x \sum_{k=0}^{n+1} \frac{(-1)^k}{(n+1-k)!}x^{n+1-k}
\]

Ce qui prouve l’hérité.

Corrigé de l’exercice 11.

1 \(f(x) = u(x)v(x) \) donc \(f'(x) = u'(x)v(x) + u(x)v'(x) \).

Ainsi,

\[
\int_a^b f'(x) \, dx = \int_a^b [u'(x)v(x) + u(x)v'(x)] \, dx
\]

soit :

\[
f(b) - f(a) = \int_a^b u'(x)v(x) \, dx + \int_a^b u(x)v'(x) \, dx.
\]

On a alors :

\[
\int_a^b u'(x)v(x) \, dx = f(b) - f(a) - \int_a^b u(x)v'(x) \, dx
\]
2 Sur \([1 ; e]\), \(\ln x \geq 0\) donc \((\ln x)^n \geq 0\) pour tout entier naturel \(n\).
Ainsi, \(I_n = \int_1^e (\ln x)^n \, dx \geq 0\).

3 \(I_{n+1} - I_n = \int_1^e (\ln x)^{n+1} \, dx - \int_1^e (\ln x)^n \, dx\)
\[= \int_1^e \left[(\ln x)^{n+1} - (\ln x)^n\right] \, dx\]
par linéarité de l’intégrale
\[= \int_1^e (\ln x)^n (\ln x - 1) \, dx.\]
Or, \(1 \leq x \leq e \Rightarrow \ln 1 \leq \ln x \leq \ln e\)
\[\Leftrightarrow 0 \leq \ln x \leq 1\]
\[\Leftrightarrow -1 \leq \ln x - 1 \leq 0\]
Ainsi, sur \([1 ; e]\), \((\ln x)^n(\ln x - 1) \leq 0\) (car \((\ln x)^n \geq 0\) sur cet intervalle), et donc \(I_{n+1} - I_n \leq 0\).
La suite \((I_n)\) est donc décroissante.

4 Posons \(u'(x) = \frac{1}{x} (\ln x)^n\) et \(v(x) = x\). Alors, \(I_n = \int_1^e u'(x)v(x) \, dx\) et d’après la question 1,
\[I_n = f(e) - f(1) - \int_1^e u(x)v'(x) \, dx,\]
avec \(u(x) = \frac{(\ln x)^{n+1}}{n+1}\), \(v'(x) = 1\) et \(f(x) = u(x)v(x) = \frac{1}{n+1}x(\ln x)^{n+1}\).
Donc :
\[I_n = \frac{1}{n+1} \times e \times (\ln e)^{n+1} - \frac{1}{n+1} \times 1 \times (\ln 1)^{n+1} - \int_1^e \frac{1}{n+1}(\ln x)^{n+1} \times 1 \, dx\]
\[= \frac{e}{n+1} - \frac{1}{n+1} \int_1^e (\ln x)^{n+1} \, dx\]
\[= \frac{e}{n+1} - \frac{1}{n+1} I_{n+1}\]
Ainsi, en multipliant par \((n+1)\) chaque membre de cette dernière égalité, on obtient :
\[(n+1)I_n + I_{n+1} = e\]

5 a. La relation de récurrence de la question précédente donne :
- pour \(n = 0:\ I_0 + I_1 = e;\)
- pour \(n = 1:\ 2I_1 + I_2 = e.\)
Ainsi, \(I_0 + I_1 = 2I_1 + I_2,\) soit \(I_0 - I_1 = I_2.\)
b. \(I_0 = \int_1^e (\ln x)^0 \, dx = \int_1^e 1 \, dx = \left[x\right]_1^e = e - 1.\)
c. \(L'(x) = 1 \times \ln x + x \times \frac{1}{x} - 1 = \ln x + 1 - 1 = \ln x.\)
Donc \(L\) est bien une primitive de la fonction \(\ln\). On en déduit alors :
\[I_1 = \int_1^e \ln x \, dx = L(e) - L(1) = e \ln e - e - 1 \ln 1 + 1 = 1.\]
Ainsi,
\[I_2 = I_0 - I_1 = e - 1 - 1 = e - 2.\]
Lois continues

Exercices d’application du cours
Exercices de réflexion
Exercice & corrigé relus avec attention pour éviter les erreurs

22 février 2017

Loi uniforme

Exercice 1. Feu tricolore
(Source : ts-loicont-02)

À un feu tricolore, le signal destiné aux piétons est vert pendant 45 secondes et rouge pendant 105 secondes, en alternance. À 12 heures, le feu se met au rouge et un piéton se présente à un instant au hasard entre 12 heures et 12 heures 05 pour traverser. La variable aléatoire T qui donne le temps écoulé, en secondes, entre 12 heures et l’heure d’arrivée du piéton suit une loi uniforme sur $I = [0 ; 300]$.

Calculer la probabilité que le piéton :

1. Trouve le feu vert et passe sans attendre.
2. N’attende pas le feu vert plus de 15 secondes.
3. Attende le feu vert plus de 30 secondes.

Exercice 2. À la caisse d’un supermarché
(Source : ts-loicont-03)

Monsieur Leumateux vient d’aménager dans un quartier où se trouvent, à peu près à la même distance de chez lui, deux supermarchés, notés A et B. Afin de choisir celui dans lequel il ira, il prend en considération le temps d’attente aux caisses.

Dans le supermarché A, le temps d’attente aux caisses est une variable aléatoire X, exprimée en minutes, qui suit la loi uniforme sur $[1 ; 14]$ et dans le supermarché B, le temps d’attente est une variable aléatoire Y, exprimée en minutes, qui suit la loi uniforme sur $[3 ; 10]$.

1. Déterminer la probabilité pour qu’un client attende aux caisses entre 3 et 5 minutes dans les deux supermarchés.

2. Calculer la probabilité pour qu’un client attende aux caisses plus de 8 minutes dans les deux supermarchés.

3. Calculer le temps d’attente moyen aux caisses pour les deux supermarchés.
Exercice 3. Temps de trajet
(Source : ts-loicont-04)
À travers un sondage auprès de lycéens fréquentant un établissement en centre ville d’une grande agglomération, on constate que le temps de trajet pour se rendre de leur domicile à leur établissement est compris entre 5 et 25 minutes.
On interroge au hasard un lycéen d’une grande agglomération et on note X la variable aléatoire égale au temps qu’il met pour aller de chez lui à son lycée.

1. Donner la loi de probabilité que suit X.
2. Quelle est la probabilité que la durée de son trajet soit comprise entre 10 et 15 minutes?
4. Un élève emprunte tous les jours le même trajet pour aller de son domicile au lycée. On suppose que la durée des trajets sont toutes indépendantes les unes des autres.
 Sur une semaine de cours (du lundi au vendredi), quelle est la probabilité pour qu’au moins un trajet dure au moins 20 minutes? On donnera une valeur approchée au centième.

Exercice 4. La partie de jeu vidéo
(Source : ts-loicont-01)
Tous les soirs, Hugo joue en ligne avec son ami Igor entre 17h30 et 19h00.
Caroline décide d’aller voir Hugo entre 17h00 et et 18h00.

1. Quelle est la probabilité qu’elle dérange Hugo en pleine partie de jeu vidéo?
2. Sachant qu’elle arrive après le début du jeu, quelle est la probabilité qu’elle arrive avant 17h55?

Exercice 5. La livraison à domicile
(Source : ts-loicont-05)
Madame Baute a commandé des chaussures sur un site Internet.
Le jour de la livraison, elle reçoit un SMS lui signifiant que son colis sera livré assurément entre 10h00 et 12h00.
On note X l’heure à laquelle elle reçoit son colis.

1. Quelle est la probabilité pour que son colis arrive avant 10h15?
2. Quelle est la probabilité pour que son colis arrive entre 10h30 et 11h00?
3. Sachant qu’à 11h15, elle n’a toujours pas reçu son colis, quelle est la probabilité pour qu’elle le reçoive avant 11h30?
Exercice 6. Paradoxe de Bertrand
(Source : ts-loicont-06)

On considère un cercle C de centre O et de rayon $r > 0$ et un triangle équilatéral ABC inscrit dans C.

On trace la perpendiculaire à (AB) passant par O ; elle coupe (AB) en H.

1. a. Montrer que H est le milieu de [AB].
 b. Exprimer OH en fonction de r.
 c. Donner, en degrés, la mesure de \widehat{AOB}.

2. On choisit un point M sur un rayon quelconque [OP] et on trace la corde perpendiculaire à (OM) passant par M.
 On appelle X la variable aléatoire égale à la longueur OM.
 a. Donner la loi de X.
 b. Quelle est la probabilité pour que cette corde ait une longueur supérieure au côté de ABC ?

3. On choisit maintenant au hasard un nombre Z entre 0 et 180, puis on construit un angle au centre de C de mesure Z degré(s). On trace alors la corde qui intercepte cet angle.
 a. Quelle est la loi de Z ?
 b. Quelle est la probabilité que cette corde ait une longueur supérieure à celle d’un côté de ABC ?

Exercice 7. La rencontre
(Source : ts-loicont-07)

Hugo et Lisa se sont donnés rendez-vous entre 16h00 à 17h00 sans se donner une heure précise. Ils arriveront donc tout deux à un horaire au hasard dans cet intervalle de temps. Hugo ne souhaite pas attendre plus de 15 minutes et Lisa, plus de 10 minutes, sans quoi la rencontre n’aura pas lieu.
Quelle est la probabilité qu’ils se rencontrent ?

Exercice 8. L’aiguille de Buffon
(Source : ts-loicont-08)

Sur un parquet, dont les dalles ont pour largeur a, on laisse tomber au hasard une aiguille de longueur ℓ. Quelle est la probabilité pour que l’aiguille chevauche deux dalles ?
Indication : on pourra considérer la position du milieu de l’aiguille et l’angle qu’elle forme avec l’horizontale (si les dalles sont verticales).
Loi exponentielle

Exercice 9. Polynésie, 2004
(Source : ts-loicont-09)

Le laboratoire de physique d’un lycée dispose d’un parc d’oscilloscopes identiques. La durée de vie en années d’un oscilloscope est une variable aléatoire notée X qui suit la loi de durée de vie sans vieillissement ou encore loi exponentielle de paramètre λ > 0.

1. Sachant que \(P(X > 10) = 0,286 \), montrer que \(\lambda = 0,125 \) au millième près.

Dans la suite de l’exercice, on prendra \(\lambda = 0,125 \).

2. Calculer la probabilité qu’un oscilloscope du modèle étudié ait une durée de vie inférieure à 6 mois.

3. Sachant qu’un appareil a déjà fonctionné 8 années, quelle est la probabilité qu’il ait une durée de vie supérieure à 10 ans ?

4. On considère que la durée de vie d’un oscilloscope est indépendante de celle des autres appareils. Le responsable du laboratoire décide de commander 15 oscilloscopes. Quelle est la probabilité qu’au moins un oscilloscope ait une durée de vie supérieure à 10 ans ?

5. Combien l’établissement devrait-il acheter d’oscilloscopes pour que la probabilité qu’au moins l’un d’entre eux fonctionne plus de 10 ans soit supérieure à 0,999 ?

Exercice 10. Liban, 2006
(Source : ts-loicont-10)

La durée de vie d’un robot exprimée en années, jusqu’à ce que survienne la première panne, est une variable aléatoire qui suit une loi exponentielle de paramètre λ > 0.

Ainsi, la probabilité qu’un robot tombe en panne avant l’instant t est égale à :

\[
P(X \leq t) = \int_0^t \lambda e^{-\lambda x} \, dx.
\]

1. Déterminer la valeur arrondie à \(10^{-2} \) près de λ pour que la probabilité \(P(X > 6) \) soit égale à 0,3.

Dans la suite de l’exercice, on prendra \(\lambda = 0,2 \).

2. À quel instant t à un mois près, la probabilité qu’un robot tombe en panne pour la première fois est-elle de 0,5 ?

3. Montrer que la probabilité qu’un robot n’ait pas eu de panne au cours des deux premières années est de \(e^{-0,4} \).

4. Sachant qu’un robot n’a pas eu de panne au cours des deux premières années, quelle est à \(10^{-2} \) près, la probabilité qu’il soit encore en état de marche au bout de six ans ?

5. On considère un lot de dix robots fonctionnant de manière indépendante. Déterminer la probabilité que, dans ce lot, il y ait au moins un robot qui n’ait pas eu de panne au cours des deux premières années.

Exercice 11. Amérique du sud, 2005
(Source : ts-loicont-11)

Alain fabrique, en amateur, des appareils électroniques. Il achète pour cela, dans un magasin, des composants tous identiques en apparence, mais dont certains présentent un défaut. On estime que la probabilité qu’un composant soit défectueux est égale à 0,02.

Les parties A et B sont indépendantes.
Partie A

On admet que le nombre de composants présentés dans le magasin est suffisamment important pour que l’achat de 50 composants soit assimilés à 50 tirages indépendants avec remise, et on appelle X le nombre de composants défectueux achetés. Alain achète 50 composants.

1. Quelle est la probabilité qu’exactement deux des composants achetés soient défectueux ? En donner une valeur approchée à 10^{-2} prés.

2. Calculer la probabilité qu’au moins un des composants achetés soit défectueux ? En donner une valeur approchée à 10^{-2} prés.

3. Quel est dans un lot de 50 composants achetés, le nombre moyen de composants défectueux ?

Partie B

On suppose que la durée de vie T_1 (en heures) de chaque composant défectueux suit une loi exponentielle de paramètre $\lambda_1 = 5 \times 10^{-4}$ et que la durée de vie T_2 (en heures) de chaque composant non défectueux suit une loi exponentielle de paramètre $\lambda_2 = 10^{-4}$.

1. Calculer la probabilité que la durée de vie d’un composant soit supérieur à 1 000 heures :
 a. si ce composant est défectueux
 b. si ce composant n’est pas défectueux

Donner une valeur approchée de ces probabilités à 10^{-2} prés.

2. Soit T la durée de vie (en heures) d’un composant achetés au hasard. Démontrer que la probabilité que ce composant soit encore en état de marche après t heures de fonctionnement est :

$$P(T \geq t) = 0, 02e^{-5 \times 10^{-4} t} + 0, 98e^{-10^{-4} t}.$$

3. Sachant que le composant acheté est encore en état de marche 1 000 heures après son installation, quelle est la probabilité que ce composant soit défectueux ? En donner une valeur approchée à 10^{-3} prés.

Exercice 12. Le chauffe-eau (avec loi normale et intervalle de fluctuation)

On donnera la valeur approchée des probabilités à 10^{-3} près.

Partie A

Monsieur Icks désire acheter un chauffe-eau de marque IGRAIC. Le vendeur lui dit que la probabilité qu’il dure plus de 10 ans est égale à 0,7.

On note X la variable aléatoire représentant la durée de vie (en années) de ce chauffe-eau et on admet que X suit une loi exponentielle de paramètre λ.

1. Déterminer la valeur de λ.

On prendra dans la suite de cet exercice $\lambda = 0, 036$.

2. Déterminer la probabilité pour que ce chauffe-eau fonctionne plus de 15 ans sachant qu’il a fonctionné au moins 10 ans.

3. Calculer t tel que $P(X \geq t) = 0, 5$, puis interpréter le résultat.

Partie B

L’usine dans laquelle sont fabriqués les chauffe-eaux de marque IGRAIC a constaté, après étude statistique, que la durée de vie d’un de ses chauffe-eaux pouvait être représentée par une variable aléatoire Z suivant la loi normale de moyenne $\mu = 30$ et d’écart-type $\sigma = 5$.

200
Évaluer $P(25 \leq Z \leq 35)$.

Le patron de l’usine souhaite que cette dernière probabilité soit égale à 0,95 sans changer la durée de vie moyenne.
Déterminer alors l’écart-type qu’il faudrait obtenir.

Partie C

Les méthodes de production ont été modifiées de sorte que 95 % des chauffe-eaux fabriqués aient une durée de vie comprise entre 25 ans et 35 ans.
Afin d’évaluer l’efficacité de ces modifications, on prélève 500 chauffe-eaux au hasard dans la production mensuelle.

1 Déterminer l’intervalle de fluctuation asymptotique au seuil de 95 % de la proportion de chauffe-eaux ayant une durée de vie comprise entre 25 ans et 35 ans sur un échantillon de taille 500.

2 Parmi les 500 chauffe-eaux choisis, 463 sont considérés comme pouvant avoir une durée de vie conforme aux exigences.
Peut-on considérer que l’objectif visé par les modifications de fabrication a été atteint en considérant l’intervalle de fluctuation obtenu à la question précédente?

Exercice 13. D’après Bac France métropolitaine, 2004
(Source : ts-loicont-14)

On s’intéresse à la durée de vie, exprimée en semaines, d’un composant électronique. On modélise cette situation par une loi de probabilité P de durée de vie sans vieillissement définie sur l’intervalle $[0 ; +\infty[$ par $P([0 ; t]) = \int_{0}^{t} \lambda e^{-\lambda x} \, dx$, représentant la probabilité que le composant ne soit plus en état de marche au bout de t semaines.
Une étude statistique montrant que environ 50% d’un lot important de ces composants sont encore en état de marche au bout de 200 semaines, permet de poser $P([0 ; 200]) = 0,5$.

1 Montrer que $\lambda = \frac{\ln 2}{200}$.

2 Quelle est la probabilité qu’un de ces composants pris au hasard ait une durée de vie supérieure à 300 semaines?

Loi normale

Exercice 14. Vaches laitières de race « Française Frisonne Pis Noir »
(Source : ts-loicont-15)

La production laitière annuelle en litres des vaches laitières de la race FFPN peut être modélisée par une variable aléatoire à densité X de loi normale de moyenne $\mu = 6 000$ et d’écart-type $\sigma = 400$.

On utilisera la calculatrice pour répondre aux questions suivantes et on donnera les résultats à 10^{-4} près.

1 Calculer la probabilité qu’une vache quelconque de cette race produise moins de 5 800 litres par an.

2 Calculer la probabilité qu’une vache quelconque de cette race produise entre 5 900 et 6 100 litres de lait par an.

3 Calculer la probabilité qu’une vache quelconque de cette race produise plus de 6 250 litres par an.
Déterminer la production maximale prévisible des 30 % de vaches les moins productives du troupeau.

Déterminer la production minimale prévisible des 20 % des vaches les plus productives.

Exercice 15. Test de conformité

(Source : ts-loicont-16)

Un usine fabrique des puzzles de 512 pièces. Pour tester la conformité des puzzles, le service qualité de l’entreprise prélève au hasard un puzzle de 512 pièces.

On appelle X la variable aléatoire qui à un puzzle donné associe le nombre de pièces non conformes. On estime que X suit la loi normale de moyenne 9 et d’écart-type 3.

1. Déterminer la probabilité qu’il y ait au plus 12 pièces non conformes dans le puzzle.

2. Déterminer le plus petit entier \(k \) tel que la probabilité que le puzzle comporte plus de \(k \) pièces non conformes soit inférieure à 0,01.

Exercice 16. Les premiers mots de la vie

(Source : ts-loicont-17)

Un chercheur a étudié l’âge moyen auquel les premiers mots du vocabulaire apparaissent chez les jeunes enfants.

Une étude effectuée auprès de 1000 jeunes enfants montrent que les premiers mots apparaissent en moyenne à 11,5 mois, avec un écart-type de 3,2 mois.

On suppose que la distribution des âges est normale.

1. Évaluer la proportion d’enfants ayant acquis leurs premiers mots avant 10 mois.

2. Évaluer la proportion d’enfants ayant acquis leurs premiers mots après 18 mois.

3. Évaluer la proportion d’enfants ayant acquis leurs premiers mots entre 8 mois et 12 mois.

Exercice 17. Tests de Q.I.

(Source : ts-loicont-18)

En 1955, Wechler a proposé de mesurer le quotient intellectuel (Q.I.) des adultes à l’aide de deux échelles permettant de mesurer les compétences verbales et celles non verbales.

On compare le score global de la personne testée avec la distribution des scores obtenus par un échantillon représentatif de la population d’un âge donné, dont les performances suivent une loi normale ayant pour moyenne 100 et pour écart-type 15.

1. Quel est le pourcentage de personnes dont le Q.I. est inférieur à 80 ?

2. Quelle est la proportion de personnes ayant un Q.I. compris entre :
 a. 100 et 110 ?
 b. 90 et 100 ?
 c. 105 et 110 ?

3. Un patient obtenant un Q.I. de 69 fait-il partie des 5 % inférieurs de la distribution ?

4. En dessous de quel Q.I. se trouve le tiers des individus ?

5. Quel Q.I. minimum faut-il obtenir pour faire partie des 5 % d’individus les plus performants ?
Exercice 18. Durée de vie d’un appareil
(Source : ts-loicont-19)

La durée de vie d’un certain type d’appareil est modélisée par une variable aléatoire suivant une loi normale de moyenne et d’écart-type inconnus. Les spécifications impliquent que 80% de la production des appareils ait une durée de vie entre 120 et 200 jours et que 5% de la production ait une durée de vie inférieure à 120 jours.

1. Quelles sont les valeurs de la moyenne μ et de l’écart-type σ ?
2. Quelle est la probabilité d’avoir un appareil dont la durée de vie soit comprise entre 200 jours et 230 jours ?
Corrigé de l’exercice 1.

1. On cherche :

\[P \left((105 \leq T \leq 150) \cup (255 \leq T \leq 300) \right). \]

En effet, nous pouvons représenter la situation par le schéma suivant :

\[\begin{array}{cccccc}
0 & 105 & 150 & 255 & 300 \\
\end{array} \]

L’intervalle total « vert » a une amplitude de :

\[(150 - 105) + (300 - 255) = 45 + 45 = 90.\]

La probabilité demandée est alors :

\[\frac{90}{300} = 0,3. \]

2. La probabilité demandée est :

\[P \left((135 \leq T \leq 150) \cup (285 \leq X \leq 300) \right) = \frac{30}{300} = 0,1. \]

3. La probabilité demandée est :

\[P \left(T \leq 75 \right) \cup (150 \leq T \leq 225) = \frac{75 + 75}{300} = 0,5. \]

Corrigé de l’exercice 2.

1. • \(P(3 \leq X \leq 5) = \frac{5 - 3}{14 - 1} = \frac{2}{13}, \)

 • \(P(3 \leq Y \leq 5) = \frac{5 - 3}{10 - 3} = \frac{2}{7}. \)

On constate que \(P(3 \leq X \leq 5) < P(3 \leq Y \leq 5) \) donc sur cet unique critère, monsieur Leumateux a tout intérêt de choisir le supermarché A.

2. • \(P(X \geq 8) = 1 - P(X < 8) = 1 - \frac{8 - 1}{14 - 1} = 1 - \frac{7}{13} = \frac{6}{13}. \)
\[P(Y \geq 8) = 1 - P(Y < 8) = 1 - \frac{8 - 3}{10 - 3} = 1 - \frac{5}{7} = \frac{2}{7}. \]

\[6 \times 7 = \frac{42}{91} \quad \text{et} \quad 2 \times 13 = \frac{26}{91}. \] Ainsi, \(P(X \geq 8) > P(Y \geq 8) \).

Sur ce critère, monsieur Leumateux a tout intérêt à choisir le supermarché B.

1. Le temps d’attente moyen aux caisses du supermarché A est : \(E(X) = \frac{14 + 1}{2} = 7,5 \) minutes.

2. Le temps d’attente moyen aux caisses du supermarché B est : \(E(X) = \frac{10 + 3}{2} = 6,5 \) minutes.

Sur ce critère, monsieur Leumateux a tout intérêt de choisir le supermarché B.

\[P(X \geq 17,5) \]

\[P(17,5 \leq X \leq 18) = \frac{18 - 17,5}{18 - 17} = \frac{0,5}{1} = 0,5 \]

2 C’est une probabilité conditionnelle que nous cherchons (« sachant que » nous donne une forte indication...); en tenant compte du fait que \(17h55 = 18 - \frac{5}{60} = 18 - \frac{1}{12} \approx 17,92 \), on cherche :

\[P(X \geq 17,5)(17 \leq X \leq 17,92) = \frac{P(17 \leq X \leq 17,92 \cap X > 17,5)}{P(X > 17,5)} = \frac{P(17,5 \leq X \leq 17,92)}{P(X > 17,5)} = \frac{17,92 - 17,5}{18 - 17,5} = \frac{0,42}{0,5} \approx 0,84 \]
Corrigé de l’exercice 5.

1. X suit la loi uniforme sur $[10 ; 12]$. Mais attention : quand on dit 10h15, il faut entendre $X = 10, 25$ (soit 10h00 et un quart d’heure : $10 + \frac{1}{4} = 10 + 0, 25 = 10, 25$).

 Ainsi, $P(X \leq 10, 25) = \frac{10, 25 - 10}{12 - 10} = \frac{0, 25}{2} = 0, 125$.

2. $P(10, 5 \leq X \leq 11) = \frac{11 - 10, 5}{12 - 10} = 0, 25$.

3. $P(X \geq 11, 25) = \frac{P(11, 25 \leq X \leq 11, 5)}{P(X \geq 11, 25)} = \frac{\frac{11, 5 - 11, 25}{12 - 10}}{12 - 10} = \frac{0, 25}{0, 75} = \frac{1}{3}$.

Corrigé de l’exercice 6.

1. a. ABC est équilatéral ; par conséquent, O est le point d’intersection des hauteurs (ou des médiatrices). Donc (OH) est la hauteur relative à (AB) mais aussi la médiatrice de [AB].

 Donc H est le milieu de [AB].

 b. O est le centre de gravité de ABC donc :

 $\text{OH} = \frac{1}{3} \text{CH}$.

 Ainsi,

 \[
 \text{OH} = \frac{1}{2} r
 \]

 c. On sait depuis la 3^e que dans un polygone régulier à n côtés, l’angle au centre est, en degrés, $\frac{360}{n}$.

 Ainsi, $\text{AOB} = 120^\circ$.

2. a. OM est un nombre compris entre et r ; par conséquent, X suit la loi uniforme sur $[0 ; r]$:

 $X \sim \mathcal{U} ([0 ; r])$

 b. Pour que la corde ait une longueur supérieure au côté de ABC, il faut qu’elle se trouve dans la zone coloriée suivante :

![Diagramme]

Donc, en choisissant M sur un rayon uniquement, ça coupe en deux cette zone.

D’après la question 1.b, la probabilité pour que la corde ait une longueur plus grande que AB est :

\[
\frac{\text{OH}}{r} = \frac{\frac{1}{2} r}{r} = \frac{1}{2}.
\]
a. Z suit la loi uniforme sur $[0 ; 180]$:

\[Z \mapsto \mathcal{U}([0 ; 180]) \]

b. Pour que la corde ait une longueur supérieure à AB, il faut que $Z > 120$.

\[P(Z > 120) = P(120 < Z < 180) \]
\[= \frac{180 - 120}{180 - 0} \]
\[= \frac{60}{180} \]
\[P(Z > 120) = \frac{1}{3} \]

Corrigé de l'exercice 7.

Notons H le nombre de minutes écoulées à partir de 16h00 avant l’arrivée d’Hugo et L le nombre de minutes écoulées à partir de 16h00 avant celle de Lisa.

On a alors :

- $0 < H < 60$;
- $0 < L < 60$;
- $L < H + 10$ car Lisa ne souhaite pas attendre Hugo plus de 10 minutes ;
- $H < L + 15$ car Hugo ne souhaite pas attendre Lisa plus de 15 minutes ;

Faisons une représentation graphique :

![Diagramme graphique avec les inégalités](https://via.placeholder.com/150)

L’univers est représenté par le carré de côté 60 et la « zone de rencontre » par la zone non hachurée.

Il faut donc trouver l’aire de cette zone non hachurée.

La droite rouge a pour équation : $y = x + 10$.
La droite bleue a pour équation : $y = x - 15$.

L’aire \mathcal{A} de la zone non hachurée est l’aire du carré moins celle des triangles hachurés, d’où :

\[\mathcal{A} = 60 \times 60 - \frac{50 \times 50}{2} - \frac{45 \times 45}{2} \]
\[= 3600 - 1250 - 1012,5 \]
\[= 1337,5 \]
Ainsi, la probabilité de rencontre est :

\[
p = \frac{1337.5}{3600} \\
p \approx 0.37
\]

■ Corrigé de l’exercice 8.
Laisser tomber au hasard une aiguille, c’est choisir au hasard :
- l’abscisse \(X\) de son centre dans l’intervalle \([0; \frac{a}{2}]\);
- l’angle \(\theta\) avec l’horizontale dans l’intervalle \([-\frac{\pi}{2}; \frac{\pi}{2}]\)

comme l’illustre le schéma ci-dessous :

L’aiguille chevauche deux dalles lorsque :

\[
X \leq \frac{\ell}{2} \cos \theta
\]

donc la probabilité demandée est :

\[
P \left(X \leq \frac{\ell}{2} \cos \theta \right) = \frac{\ell}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta
\]

\[
P \left(X \leq \frac{\ell}{2} \cos \theta \right) = \frac{2\ell}{a\pi}
\]

■ Corrigé de l’exercice 9.
1. On a \(P(X > 10) = 0,286 = e^{-10\lambda}\), équation qui donne \(\lambda = 0,125\) au centième près.
2. La probabilité qu’un oscilloscope du modèle étudié ait une durée de vie inférieure à 6 mois s’écrit \(P(X \geq 0,5)\).

\[
P(X \geq 0,5) = 1 - e^{-0,5 \times 0,125} = 1 - e^{-0,0625} \approx 0,061.
\]

3. L’appareil a déjà fonctionné 8 années, la probabilité qu’il ait une durée de vie supérieure à 10 ans est donnée par : \(P_{(X>8)}(X > 10)\) avec \(P(X > 8) = e^{-8 \times 0,125}\).

\[
P((X > 10) \cap (X > 8)) = P(X > 10) = e^{-10 \times 0,125}
\]

\[
P_{(X>8)}(X > 10) = \frac{P((X > 10) \cap (X > 8))}{P(X > 8)} = \frac{e^{-10 \times 0,125}}{e^{-8 \times 0,125}} = e^{-2 \times 0,125} = P(X > 2) \approx 0,779.
\]

4. On est en présence d’un schéma de Bernoulli. La durée de vie d’un oscilloscope est indépendante de celle des autres appareils. Le responsable à commandé 15 oscilloscopes. La probabilité qu’un oscilloscope ait une durée de vie supérieure à 10 ans est la probabilité d’un « succès » et on sait qu’elle vaut \(P(X > 10) = 0,286\).
L’événement « au moins un oscilloscope parmi les 15 a une durée de vie supérieure à 10 ans » est l’événement contraire de "tous les appareils ont une durée de vie inférieure à 10 ans" de probabilité $(1 - 0,286)^{15} = 0,714^{15}$.

La probabilité qu’au moins un oscilloscope parmi les 15 ait une durée de vie supérieure à 10 ans est donc $1 - 0,714^{15} \approx 0,994$.

On reprend la situation de la question précédente avec n oscilloscopes et on cherche n tel que $1 - 0,714^n \geq 0,999$, inéquation équivalente à $0,714^n \leq 10^{-3}$ et qui donne $n \geq \frac{\ln(10^{-3})}{\ln 0,714} \approx 20,5$.

L’établissement devrait acheter 21 oscilloscopes pour que la probabilité qu’au moins l’un d’entre eux fonctionne plus de 10 ans soit supérieure à 0,999.
Corrigé de l’exercice 10.

1. \(P(X > 6) = 0,3 \Leftrightarrow 1 - P(X \leq 6) = 0,3 \)
 \[\Leftrightarrow \int_{0}^{6} \lambda e^{-\lambda x} \, dx = 0,7 \]
 \[\Leftrightarrow -e^{-6\lambda} = 0,7 \]
 \[\Leftrightarrow \lambda = \frac{-1}{6} \ln 0,3 \approx 0,20. \]

2. On cherche \(t \) tel que \(P(X \leq t) = 0,5 \), soit
 \[\int_{0}^{t} 2e^{-0,2x} \, dx = 0,5 \]
 soit, après développement,
 \(t \approx 5 \ln 2 \approx 3,47 \) années, soit 42 mois.

3. La probabilité qu’un robot n’ait pas eu de panne au cours des deux premières années est de \(e^{-0,4} \). En effet, \(P(X > 2) = 1 - P(X \leq 2) = 1 + e^{-0,4} - 1 = e^{-0,4} \).

4. Sachant qu’un robot n’a pas eu de panne au cours des deux premières années, la probabilité qu’il soit encore en état de marche au bout de six ans est :
 \[\frac{P(X > 6)}{P(X > 2)} = e^{-0,2 \times 6} \times e^{-0,2 \times 2} = e^{-0,8} \approx 0,45. \]

5. On considère un lot de dix robots fonctionnant de manière indépendante. Nous savons que la probabilité qu’un robot n’ait pas eu de panne au cours des deux premières années est de \(e^{0,4} \). En effet,\(P(X > 2) = 1 - (1 - e^{-0,4})^{10} \).
 La probabilité qu’au moins un des composants soit défectueux est donc de \(1 - (1 - e^{-0,4})^{10} \approx 0,999985 \).

Corrigé de l’exercice 11.

Partie A

1. La variable X suit la loi binomiale de paramètres \(n = 50 \) et \(p = 0,02 \). La probabilité qu’exactement deux des composants achetés soient défectueux est :
 \[P(X = 2) = C_{50}^{2} \times (0,02)^{2} \times (0,98)^{48} \approx 0,19. \]

2. Donnons d’abord la probabilité qu’aucun composant ne soit défectueux : \((0,98)^{50}\).
 La probabilité qu’au moins un des composants achetés soit défectueux est donc
 \(1 - (0,98)^{50} \approx 0,64. \)

3. Dans un lot de 50 composants achetés, le nombre moyen de composants défectueux est l’espérance de X soit \(50 \times 0,02 = 1 \).

Partie B

1. a. La probabilité que la durée de vie d’un composant soit supérieur à 1000 heures si ce composant est défectueux est :
 \[P(T_{1} \geq 1000) = 1 - \int_{0}^{1000} 5 \times 10^{-4} e^{(-5 \times 10^{-4})x} \, dx = e^{-0,5} \approx 0,61. \]

 b. La probabilité que la durée de vie d’un composant soit supérieur à 1000 heures si ce composant n’est pas défectueux est :
 \[P(T_{2} \geq 1000) = 1 - \int_{0}^{1000} 10^{-4} e^{(-10^{-4})x} \, dx = e^{-0,1} \approx 0,90. \]
2 Soit T la durée de vie (en heures) d’un composant acheté au hasard. Notons respectivement A et D les événements $(T \leq t)$ et « le composant est défectueux ». On peut écrire : $A = (D \cap A) \cup (\bar{D} \cap A)$. De plus, on sait que $P(D) = 0,02$. Alors :

$$P(T \geq t) = P(A) = P(D) \times P_D(A) + P(\bar{D}) \times P_{\bar{D}}(A),$$

soit :

$$P(T \geq t) = P(D) \times P_D(T \geq t) + P(\bar{D}) \times P_{\bar{D}}(T \geq t),$$

d’où :

$$P(T \geq t) = 0,02 \times \left(1 - 1 + e^{(-5 \times 10^{-4})t}\right) + 0,98 \left(1 - 1 + e^{-10^{-4}t}\right)$$

Ainsi :

$$P(T \geq t) = 0,02e^{(-5 \times 10^{-4})t} + 0,98e^{-10^{-4}t}$$

3 Sachant que le composant acheté est encore en état de marche 1000 heures après son installation, la probabilité que ce composant soit défectueux est :

$$P_{(T\geq1000)}(D) = \frac{P(D \cap (T \geq 1000))}{P(T \geq 1000)} = \frac{0,02e^{-5 \times 10^{-4} \times 1000}}{0,02e^{-5 \times 10^{-4} \times 1000} + 0,98e^{-10^{-4} \times 1000}} \approx 0,013.$$

Corrigé de l’exercice 12.

Partie A

1 On sait que $P(X \geq 10) = 0,7$, soit $e^{-10 \lambda} = 0,7$.
 Ainsi, $-10 \lambda = \ln 0,7$, d’où $\lambda = \frac{\ln 0,7}{-10} \approx 0,036$.

2 On calcule :

$$P_{(X \geq 10)}(X \geq 15) = P(X \geq 15 - 10) = P(X \geq 5) = e^{-5 \times 0,036}$$

$$P_{(X \geq 10)}(X \geq 15) \approx 0,837$$

3 $P(X \geq t) = 0,5 \iff e^{-0,036t} = 0,5$
 $\iff -0,036t = -\ln 2$
 $\iff t = \frac{\ln 2}{0,036}$
 $\iff t \approx 19,25$

On peut donc dire que la probabilité pour que le chauffe-eau fonctionne plus de 19 ans et 3 mois est égale à 0,5.

Autrement dit, la demi-vie du chauffe-eau est 19 ans et 3 mois.

Partie B
D’après le cours, si Z suit la loi $\mathcal{N}(\mu; \sigma^2)$, alors,

$$P(\mu - \sigma \leq Z \leq \mu + \sigma) = 0.68.$$

Donc, ici,

$$P(30 - 5 \leq Z \leq 30 + 5) = 0.68,$$

ou encore :

$$P(25 \leq Z \leq 35) = 0.68.$$

On sait que $P(\mu - 2\sigma \leq Z \leq \mu + 2\sigma) = 0.95$, donc on souhaite que la variance soit réduite de moitié, donc que $\sigma^2 = \frac{5}{2}$.

Ainsi, $\sigma = \sqrt{\frac{5}{2}}$, soit $\sigma \approx 1.58$.

Une autre façon de faire : On pose $Y = \frac{Z - 30}{\sigma}$. Alors, Y suit la loi $\mathcal{N}(0; 1)$. De plus, $\sigma Y + 30 = Z$ donc :

$$P(25 \leq Z \leq 35) = 0.95 \iff P(25 \leq \sigma Y + 30 \leq 35) = 0.95 \iff P\left(-\frac{5}{\sigma} \leq Y \leq \frac{5}{\sigma}\right) = 0.95$$

Il faut donc que $\frac{5}{\sigma} = 2\sigma$, soit $\sigma^2 = \frac{5}{2}$, d’où $\sigma \approx 1.58$.

Partie C

1. $n = 500 \geq 30$, $p = 0.95$ donc $np = 475 \geq 5$ et $n(1 - p) = 25 \geq 5$ donc l’intervalle de fluctuation asymptotique au seuil de 95% demandé est donné par :

$$I = \left[0, 95 - 1.96\sqrt{\frac{0.95 \times 0.05}{500}} ; 0, 95 + 1.96\sqrt{\frac{0.95 \times 0.05}{500}}\right],$$

soit :

$$I \approx [0.931 ; 0.969].$$

2. La fréquence des chauffe-eaux conformes aux exigences est égale à $f = \frac{463}{500} = 0.926$.

Or, $f \notin I$ donc on peut affirmer que l’objectif n’est pas atteint.

Corrigé de l’exercice 13.

1. On sait que $P([0 ; 200]) = 0.5$.

Or, $P([0 ; 200]) = \int_0^{200} \lambda e^{-\lambda x} \, dx = -e^{-200\lambda} + 1$. Donc $-e^{-200\lambda} + 1 = 0.5$, soit $e^{-200\lambda} = 0.5$, d’où $-200\lambda = \ln 0.5 = -\ln 2$. On en déduit alors que $\lambda = \frac{\ln 2}{200}$.

2. La probabilité qu’un de ces composants pris au hasard ait une durée de vie supérieure à 300 semaines est $P(t \geq 300) = 1 - P(t \leq 300) = 1 - (1 - e^{-300\lambda}) = e^{-\frac{2}{\ln 2}} \approx 0.35$.

Corrigé de l’exercice 14.

1. $P(X \leq 5800) \approx 0,3085$.

2. $P(5900 \leq X \leq 6100) \approx 0,1974$.

3. $P(X \geq 6250) \approx 0,2660$.

4. On cherche la valeur de x telle que $P(X \leq x) = 0,30$. On trouve $x \approx 5790$ litres.
On cherche la valeur de \(x \) telle que \(P (X \geq x) = 0,20 \), soit \(P (X \leq x) = 0,8 \) (on est obligé de se ramener à cela pour pouvoir utiliser la calculatrice). On trouve \(x \approx 6,336 \) litres.

Corrigé de l'exercice 15.

1. \(P (X \leq 12) \approx 0,8413 \) (à l’aide de la calculatrice).
2. On cherche \(k \) tel que \(P (X \geq k) = 0,01 \), soit \(P (X \leq k) = 0,99 \). À l’aide de la calculatrice, on trouve \(k \approx 16 \).

Corrigé de l'exercice 16.

On choisit au hasard un jeune enfant et on note \(X \) l’âge (en mois) de ses premiers mots. D’après l’énoncé, \(X \) suit la loi normale \(N (11,5 ; 3,2) \).

On pose alors \(Z = \frac{X - 11,5}{3,2} \); ainsi, \(Z \) suit la loi normale centrée réduite d’après le cours.

1. \(P (X \leq 10) = P \left(Z \leq \frac{10 - 11,5}{3,2} \right) \)

 \[= P (Z \leq -0,46875) \]

 \[= 1 - P (X \leq 0,46875) \]

 \[\approx 0,3196 \) (calculatrice). \]

 Ainsi, il y a environ 31,96 % de jeunes enfants qui acquièrent leurs premiers mots avant 10 mois.

2. \(P (X \geq 18) = P \left(Z \geq \frac{18 - 11,5}{3,2} \right) \)

 \[= P (Z \geq 2,03125) \]

 \[= 1 - P (Z < 2,03125) \]

 \[\approx 0,0211 \) (calculatrice). \]

 Ainsi, il y a environ 2,11 % de jeunes enfants qui acquièrent leurs premiers mots après 18 mois.

3. \(P (8 < X < 12) = P \left(\frac{8 - 11,5}{3,2} < Z < \frac{12 - 11,5}{3,5} \right) \)

 \[= P (-1,09375 < Z < 0,15625) \]

 \[= P (Z < 0,15625) - P (Z < -1,09375) \]

 \[\approx 0,4250 \).

 Ainsi, il y a environ 42,5 % de jeunes enfants qui acquièrent leurs premiers mots entre 8 et 12 mois.

Corrigé de l'exercice 17.

On pose \(X \) la variable aléatoire représentant le Q.I. d’une personne prise au hasard. \(X \) suit la loi normale \(N (100 ; 15) \) d’après l’énoncé.

On pose alors \(Z = \frac{X - 100}{15} \); \(Z \) suit alors la loi normale centrée réduite.

1. \(P (X < 80) = P \left(Z < \frac{80 - 100}{15} \right) \)

 \[= P (Z < -4) \]

 \[\approx 0,0912 \).

 Il y a donc environ 9,12 % d’individus dont le Q.I. est inférieur à 80.
a. \(P(100 < X < 110) = P\left(\frac{100 - 100}{15} < Z < \frac{110 - 100}{15}\right) \)

\[= P\left(0 < Z < \frac{2}{3}\right) \approx 0,2475. \]

Il y a donc environ 24,75 % d’individus dont le Q.I. est compris entre 100 et 110.

b. \(P(90 < X < 100) = P(100 < X < 110) \) car la courbe est symétrique par rapport à la moyenne, donc à 100 ici.

Il y a donc environ 24,75 % d’individus dont le Q.I. est compris entre 90 et 100.

c. \(P(105 < X < 110) = P\left(\frac{105 - 100}{15} < Z < \frac{110 - 100}{15}\right) \)

\[= P\left(\frac{1}{3} < Z < \frac{2}{3}\right) \approx 0,1169. \]

Il y a donc environ 11,69 % d’individus dont le Q.I. est compris entre 105 et 110.

3 Ici, on cherche l’entier \(n \) tel que \(P(X \leq n) = 0,05 \).

La calculatrice nous donne \(n \approx 75 \). Donc si l’on a un Q.I. inférieur à 75, ce qui est le cas ici (Q.I.= 69), on appartient aux 5 % inférieurs de la population.

4 Ici, on cherche l’entier \(n \) tel que \(P(X \leq n) = 0,33 \).

La calculatrice nous donne \(n \approx 93 \).

5 On cherche ici l’entier \(n \) tel que \(P(X \leq n) = 0,95 \).

La calculatrice nous donne \(n = 124 \).

Corrigé de l’exercice 18.

1 Notons \(X \) la variable aléatoire représentant la durée de vie de l’appareil, et \(Z = \frac{X - \mu}{\sigma} \).

Alors, \(Z \) suit la loi normale centrée réduite \(N(0 ; 1) \).

D’après l’énoncé, on a \(P(120 \leq X \leq 200) = 0,8 \); donc \(P\left(\frac{120 - \mu}{\sigma} \leq Z \leq \frac{200 - \mu}{\sigma}\right) = 0,8 \) (1).

De plus, \(P(X \leq 120) = 0,05 \) (2) ; donc \(P\left(Z \leq \frac{120 - \mu}{\sigma}\right) = 0,05 \). À l’aide de la calculatrice, on trouve alors que \(\frac{120 - \mu}{\sigma} = -1,65 \), soit \(120 - \mu = -1,65\sigma \), que l’on peut écrire : \(\mu = 120 + 1,65\sigma \) (3).

Des égalités (1) et (2), on déduit que \(P\left(Z \leq \frac{200 - \mu}{\sigma}\right) = 0,85 \). À l’aide de la calculatrice, on trouve alors que \(\frac{200 - \mu}{\sigma} = 1,04 \), soit \(200 - \mu = 1,04\sigma \), que l’on peut écrire : \(\mu = 200 - 1,04\sigma \) (4).

Les égalités (3) et (4) nous permettent d’écrire alors : \(120 + 1,65\sigma = 200 - 1,04\sigma \),

soit :

\[2,69\sigma = 80 \quad \text{ou encore} \quad \sigma = \frac{80}{2,69} \approx 29,74 \quad \text{(soit} \quad \sigma^2 \approx 884)\].

Ainsi, \(\mu \approx 120 + 1,65 \times 29,74 \approx 169 \).

\(X \) suit donc la loi normale \(N(169 ; 884) \).

2 \(P(200 \leq X \leq 230) = P(X \leq 230) - P(X \leq 200) \approx 0,13 \).
Géométrie dans l’espace

Exercices d’application du cours
Exercices de réflexion
Exercice & corrigé relus avec attention pour éviter les erreurs

Géométrie non analytique

Exercice 1. Coplanarité
(Source : ts-geomesp-08)

On considère le cube ABCDEFGH suivant :

1. Justifier que A, D, F et G sont coplanaires.
2. Démontrer que (CE) et (BH) sont sécantes.
3. a. Justifier que (BD) et (FH) sont parallèles.
 b. Soient I et J les milieux respectifs de [AB] et [AD].
 Démontrer que (IJ) et (FH) sont parallèles.
4. Démontrer que (FI) et (HJ) sont sécantes. On note \(\Omega \) leur point d’intersection.
 Démontrer que \(\Omega \)AHD est un parallélogramme.
Section de solide

Exercice 2. Section d’un cube par un plan
(Source : ts-geomesp-06)

On considère le cube ABCDEFGH suivant :

I et J sont les milieux respectifs des segments [AD] et [AB], et K est défini par l’égalité suivante :

\[\overrightarrow{GK} = \frac{1}{4}\overrightarrow{GF} \]

On note L le point d’intersection de (IJ) et (CB).
Après avoir construit le point L, dessiner la section du cube ABCDEFGH par le plan (IJK).

Exercice 3. Section d’un cube par un plan
(Source : ts-geomesp-07)

On considère le cube ABCDEFGH suivant :

K ∈ [EF], I ∈ [DC] et J ∈ [CG].
Construire la section du cube ABCDEFGH par le plan (IJK).
Représentations paramétriques

Exercice 4. Représentations paramétriques de droites
(Source : ts-geomesp-01)
Dans chacune des questions suivantes, déterminer une représentation paramétrique de la droite D, passant par le point A et de vecteur directeur \vec{u}.

1. $A(0; 2; -1)$ et $\vec{u} \left(\begin{array}{c} -1 \\ 2 \\ -1 \end{array} \right)$
2. $A(-3; 1; 5)$ et $\vec{u} \left(\begin{array}{c} 0 \\ -2 \\ 3 \end{array} \right)$
3. $A(2; -3; 4)$ et $\vec{u} \left(\begin{array}{c} 1 \\ 2 \\ -3 \end{array} \right)$

Exercice 5. Droites confondues
(Source : ts-geomesp-03)
Soient (D_1) dont une représentation paramétrique est :

\[
\begin{align*}
\begin{cases}
 x = \frac{3}{2} + \frac{3}{2}t \\
 y = -\frac{1}{4} + \frac{5}{4}t \\
 z = t
\end{cases} , \quad t \in \mathbb{R}
\end{align*}
\]

et (D_2) dont une représentation paramétrique est :

\[
\begin{align*}
\begin{cases}
 x = \frac{9}{5} + \frac{6}{5}t \\
 y = t \\
 z = \frac{1}{5} + \frac{2}{5}t
\end{cases} , \quad t \in \mathbb{R}
\end{align*}
\]

Montrez que (D_1) et (D_2) sont confondues.

Exercice 6. Récapitulatif
(Source : ts-geomesp-09)
Dans un repère orthonormé $(O ; \vec{i}, \vec{j}, \vec{k})$, on considère les points suivants :

$A(2; -1; 0) ; \quad B(-1; 1; 1) \quad C(3; -2; -1)$

1. Montrer que A, B et C ne sont pas alignés.
2. Déterminer alors une représentation paramétrique du plan (ABC).
3. Soit $E(0; -1; 1)$.
 a. Vérifier que E n’appartient pas au plan (ABC).
 b. On considère la droite passant par E et orthogonale au plan (ABC). On pose $H(a; b; c)$ son point d’intersection avec le plan (ABC).
 Déterminer les valeurs de a, b et c.
 c. Déterminer alors une équation paramétrique de la droite (EH).
Équations cartésiennes

Exercice 7. Intersection de plans
(Source : ts-geomesp-02)

Pour chaque question, déterminer une représentation paramétrique de l’intersection des plans (P_1) et (P_2).

1. \[
\begin{align*}
(P_1) & : 3x - y + z = 7 \\
(P_2) & : -x + 3y + 2z = 1
\end{align*}
\]

2. \[
\begin{align*}
(P_1) & : x + y + z = 1 \\
(P_2) & : 2x - 3y + z = 4
\end{align*}
\]

3. \[
\begin{align*}
(P_1) & : 2x - 2y + 3z = 4 \\
(P_2) & : 2x - 3y - 3z = 2
\end{align*}
\]

Exercice 8. Dans un cube
(Source : ts-geomesp-04)

Soit ABCDEFGH un cube comme représenté ci-dessous. On place les points I, J et K respectivement au milieu des côtés [DC], [GH] et [DH]. On fixe le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

1. Montrer que le vecteur $u = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 0 \end{pmatrix}$ est un vecteur normal au plan (AEJI).

2. En déduire une équation cartésienne du plan (AEJI).

3. On admet que la distance du point K au plan (AEJI) est égale à $\frac{1}{\sqrt{5}}$.
 En déduire le volume de la pyramide AEJIK.

4. Donner une représentation paramétrique de la droite D, perpendiculaire au plan (AEJI) et passant par K.
 En déduire les coordonnées du point d’intersection de D avec le plan (AEJI).
Dans l’espace muni d’un repère orthonormal \((O ; \vec{r}, \vec{f}, \vec{k})\), on considère :

- les points \(A(1 ; 1 ; 1)\) et \(B(3 ; 2 ; 0)\);
- le plan \((P)\) passant par le point \(B\) et admettant le vecteur \(\overrightarrow{AB}\) pour vecteur normal;
- le plan \((Q)\) d’équation : \(x - y + 2z + 4 = 0\);
- la sphère \((S)\) de centre \(A\) et de rayon \(AB\).

1. Montrer qu’une équation cartésienne du plan \((P)\) est : \(2x + y - z - 8 = 0\)
2. Déterminer une équation de la sphère \((S)\).
3. a. Calculer la distance du point \(A\) au plan \((Q)\).
 En déduire que le plan \((Q)\) est tangent à la sphère \((S)\).
 b. Le plan \((P)\) est-il tangent à la sphère \((S)\)?
4. a. On admet que le projeté orthogonal de\(A\) sur le plan \((Q)\), noté \(C\), a pour coordonnées \((0 ; 2 ; -1)\).
 b. Soit \((D)\) la droite d’intersection des plans \((P)\) et \((Q)\).
 Montrer qu’une représentation paramétrique de la droite \((D)\) est :
 \[
 \begin{cases}
 x = t \\
 y = 12 - 5t \\
 z = 4 - 3t
 \end{cases}, t \in \mathbb{R}
 \]
 c. Vérifier que le point \(A\) n’appartient pas à la droite \((D)\).
 d. On appelle \((R)\) le plan défini par le point \(A\) et la droite \((D)\).
 L’affirmation suivante est-elle vraie ou fausse ?
 « Tout point du plan \((R)\) est équidistant des points \(B\) et \(C\).»
 Justifier votre réponse.
Corrigé de l’exercice 1.

1. On sait que (AD) et (BC) sont parallèles ; de plus, (FG) et (BC) sont aussi parallèles. Or, si deux droites sont parallèles à une même droite alors elles sont parallèles. Donc (AD) et (FG) sont parallèles.

 Or, il existe un unique plan contenant deux droites parallèles. Donc A, D, F et G sont coplanaire.

2. Par un raisonnement analogue à celui de la réponse à la question précédente, on démontre que B, C, H et E sont coplanaire.

 De plus, EH = BC donc BCHE est un parallélogramme. Or, dans un parallélogramme, les diagonales se coupent (en leur milieu). Ainsi, (BH) et (CE) sont sécantes.

3. a. (DH) et (AE) sont parallèles ; de plus, (AE) et (FB) sont parallèles. Donc (DH) et (BF) sont parallèles.

 De plus, DH = BF donc DHFB est un parallélogramme. Ainsi, (FH) et (DB) sont parallèles.

 Or, d’après la question précédente, (BD) et (FH) sont parallèles donc (IJ) et (FH) sont parallèles.

4. Complétons la figure :

 (IJ) et (FH) sont parallèles donc I, J, F et H sont coplanaire.

 De plus, IJ = \(\frac{1}{2} \) DB = \(\frac{1}{2} \) FH donc IJHF n’est pas un parallélogramme. (IF) et (JH) ne sont donc pas parallèles. De plus, elles sont coplanaire, donc elles sont sécantes.

 I milieu de [\(\Omega F \)] et J milieu de [\(\Omega H \)].

 De plus, IJ = \(\frac{1}{2} \) HF donc I et J sont les milieux respectifs de [\(\Omega F \)] et [\(\Omega H \)].

 J est le milieu de [\(\Omega H \)] et de [\(\Omega D \)]. Par conséquent, AHD\(\Omega \) est un parallélogramme.
Corrigé de l'exercice 2.

Construisons en premier le point L en prolongeant les segments [IJ] et [CB] de sorte à tracer les demi-droites [IJ] et [CB] comme ci-dessous :

Les points L et K appartiennent aux plans (IJK) et à la face (CBFG), par conséquent, l’intersection de ces deux plans est la droite (LK). On la trace donc et on trace en rouge le segment qui est dans la face (CBFG) :

Les faces (BFGC) et (ADHE) sont parallèles et le plan (IJK) est sécant avec ces deux faces ; de plus, I appartient aux deux plans donc l’intersection de (IJK) et (ADHE) est la droite parallèle à (KL) passant par I. On la trace donc et on trace en rouge la partie qui est sur la face (ADHE) :

De même, la section de la face (EFGH) par (IJK) est une droite parallèle à (IJ) passant par K :

Il ne reste plus qu’à fermer la figure en rouge et nous obtenons la section du cube par le plan (IJK) :

Corrigé de l’exercice 3.

Étape 1 : on prolonge la droite (IJ) car I et J sont sur la même face.

Nous trouvons ainsi l’intersection de (IJ) et (HG) : on nomme ce point L.

Pourquoi chercher l’intersection de (IJ) avec (HG) ? Parce que le troisième point (K) est sur la face (EFGH) et que (HG) est aussi sur cette face.

(IJ) coupe aussi (DH), mais (DH) n’est pas incluse dans (EFGH).
Étape 2 : on trace la droite (LK).
Cette droite est dans le plan (EFG) mais aussi dans le plan (IJK) car L et K sont deux points de ces deux plans.
Ainsi, en prenant la partie de (LK) dans la face (EFGH), on aura une section du cube par (IJK) : c’est le segment [KM].

Étape 3 : on trace [JM].
Ben ouais! Parce que J et M sont sur la face (BFGC)... alors bon! [JM] fait partie de la section du cube par (IJK)...

Étape 4 : on trace les parallèles aux segments obtenus.
On trace la parallèle à (IJ) passant par K, car K est sur la face (ABCD) qui est parallèle à la face (DCGH). Elle coupe [AE] en un point que l’on nomme N.
Ensuite, on trace la parallèle à (JM) passant par N car (JM) est incluse dans la face (BFGC) et que celle-ci est parallèle à la face (AEHD). Cette parallèle coupe [AD] en un point que l’on nomme P.

Il ne reste plus qu’à joindre P et I et nous avons la section du cube par (IJK).
Corrigé de l’exercice 4. Nous savons qu’une représentation paramétrique de droite passant par le point \(A(x_A; y_A; z_A) \) et de vecteur directeur \(\vec{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix} \) est de la forme :

\[
\begin{cases}
 x = x_A + at \\
 y = y_A + bt \\
 z = z_A + ct
\end{cases}, \quad t \in \mathbb{R}
\]

On a alors :

1. \((D) : \begin{cases}
 x = -t \\
 y = 2 + 2t, \quad t \in \mathbb{R} \\
 z = -1 - t
\end{cases}
\]

2. \((D) : \begin{cases}
 x = 3 \\
 y = 1 - 2t, \quad t \in \mathbb{R} \\
 z = 5 + 3t \\
 x = 2 + t \\
 z = 4 - 3t
\end{cases}
\]

Corrigé de l’exercice 5. D’après leur représentation paramétrique, \((D_1)\) a pour vecteur directeur \(\vec{u} \begin{pmatrix} 3/2 \\ 5/4 \\ 1 \end{pmatrix} \) et \((D_2)\) a pour vecteur directeur \(\vec{v} \begin{pmatrix} 6/5 \\ 1 \\ 4/5 \end{pmatrix} \). On remarque que \(\vec{v} = \frac{4}{5} \vec{u} \) donc les vecteurs sont colinéaires, ce qui signifie que \((D_1)\) et \((D_2)\) sont parallèles.

De plus, le point \(A\left(\frac{3}{2}; -\frac{1}{4}; 0\right) \in (D_1) \); vérifions que \(A \in (D_2) \). Pour cela, vérifions que ses coordonnées vérifient la représentation paramétrique de \((D_2)\) :

\[
\begin{cases}
 3/2 = 9/5 + 6t/5 \\
 -1/4 = t \\
 0 = 1/5 + 4t/5
\end{cases} \quad \Rightarrow t = -1/4
\]

On trouve une valeur de \(t \) et une seule ; par conséquent, \(A \in (D_2) \), ce qui signifie alors que \((D_1)\) et \((D_2)\) sont confondues.

Corrigé de l’exercice 6.

1. \(\vec{AB} \begin{pmatrix} -1 - 2 \\ 1 - (-1) \\ 1 - 0 \end{pmatrix} = \vec{AB} \begin{pmatrix} -3 \\ 2 \\ 1 \end{pmatrix} \).

2. \(\vec{AC} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \)

\(1 \neq -\frac{1}{3} \) donc les vecteurs \(\vec{AB} \) et \(\vec{AC} \) ne sont pas colinéaires.

Par conséquent, les points A, B et C ne sont pas alignés.

2. \(\vec{AB} \) et \(\vec{AC} \) sont deux vecteurs non colinéaires du plan \((ABC)\) donc ce sont deux vecteurs directeurs de ce plan. de plus, \(A \in (ABC) \) donc une représentation paramétrique du plan \((ABC)\) est :

\[
\begin{cases}
 x = 2 - 3t + t' \\
 y = -1 + 2t - t' , \quad (t; t') \in \mathbb{R}^2 \\
 z = t - t'
\end{cases}
\]
3 E(0; −1; 1).

a. Si E ∈ (ABC) alors il existe deux réels t et t’ tels que :

\[
\begin{align*}
0 &= 2 - 3t + t' \\
-1 &= -1 + 2t - t' \\
1 &= t - t'
\end{align*}
\]

soit

\[
\begin{align*}
t' &= 3t - 2 \\
2t &= t' \\
1 &= t - t'
\end{align*}
\]

Des 1ère et 2e équations, on déduit que :

\[3t - 2 = 2t\quad \text{soit}\quad t = 2\]

et donc

\[t' = 2 \times 2 = 4\]

La 3e équation donne alors :

\[1 = 2 - 4\]

ce qui n’est pas vrai, donc il n’existe pas de réels t et t’ tels que les coordonnées de E satisfont la représentation paramétrique de (ABC) que nous avons donnée à la question précédente.

Ainsi, E n’appartient pas au plan (ABC).

b. Par définition, (EH) est orthogonale au plan (ABC) donc :

\[
\begin{align*}
\vec{AB} \cdot \vec{EH} &= 0 \\
\vec{AC} \cdot \vec{EH} &= 0
\end{align*}
\]

\[\iff\]

\[
\begin{align*}
-3a + 2b + c + 1 &= 0 \\
a - b - c &= 0
\end{align*}
\]

Or, H ∈ (ABC) donc il existe deux réels t et t’ pour lesquels :

\[
\begin{align*}
a &= 2 - 3t + t' \\
b &= -1 + 2t - t' \\
c &= t - t'
\end{align*}
\]

Le système précédent devient alors :

\[
\begin{align*}
-3(2 - 3t + t') + 2(-1 + 2t - t') + (t - t') + 1 &= 0 \\
(2 - 3t + t') - (-1 + 2t - t') - (t - t') &= 0
\end{align*}
\]

soit

\[
\begin{align*}
14t - 6t' &= 7 \\
-2t + t' &= -1
\end{align*}
\]

On trouve alors \(t = \frac{1}{2}\) et \(t' = 0\), d’où :

\[
\begin{align*}
a &= 2 - \frac{3}{2} = \frac{1}{2} \\
b &= -1 + 1 = 0 \\
c &= \frac{1}{2}
\end{align*}
\]

D’où H \((\frac{1}{2}; 0; \frac{1}{2})\)

c. \vec{EH} \((\frac{1}{2}; 1; -\frac{1}{2})\) donc une représentation paramétrique de (EH) est (en prenant les coordonnées de E) :

\[
\begin{align*}
x &= \frac{1}{2}k \\
y &= -1 + k \\
z &= 1 - \frac{1}{2}k
\end{align*}
\]

\[k \in \mathbb{R}\]
Corrigé de l’exercice 7.
Nous savons que si deux plans se coupent, alors leur intersection est une droite. Il nous faut donc trouver une représentation paramétrique de cette droite pour chacune des questions.

1 \[
\begin{align*}
(P_1) : 3x - y + z &= 7 \\
(P_2) : -x + 3y + 2z &= 1
\end{align*}
\] \[\iff\] \[\begin{align*}
3x - y + z &= 7 \\
8y + 7z &= 10 (L_2) \iff (L_1) + 3(L_2)
\end{align*}\]
\[\iff\] \[\begin{align*}
x &= \frac{11}{4} - \frac{5}{8} z \\
y &= \frac{5}{4} - \frac{7}{8} z
\end{align*}\]
Ainsi, une représentation paramétrique de l’intersection de \((P_1)\) et \((P_2)\) est :
\[
\begin{align*}
x &= \frac{11}{4} - \frac{5}{8} t \\
y &= \frac{5}{4} - \frac{7}{8} t \\
z &= t, t \in \mathbb{R}
\end{align*}\]

2 \[
\begin{align*}
(P_1) : x + y + z &= 1 \\
(P_2) : 2x - 3y + z &= 4
\end{align*}\]
\[\iff\] \[\begin{align*}
x + y + z &= 1 \\
5y + z &= -2 (L_2) \iff 2(L_1) - (L_2) \\
\iff\] \[\begin{align*}
x + y + z &= 1 \\
z &= -2 - 5y \\
x &= 3 + 4y \\
z &= -2 - 5y
\end{align*}\]
Ainsi, une représentation paramétrique de l’intersection de \((P_1)\) et \((P_2)\) est :
\[
\begin{align*}
x &= 3 + 4t \\
y &= t \\
z &= -2 - 5t, t \in \mathbb{R}
\end{align*}\]

3 \[
\begin{align*}
(P_1) : 2x - 2y + 3z &= 4 \\
(P_2) : 2x - 3y - 3z &= 2
\end{align*}\]
\[\iff\] \[\begin{align*}
2x - 2y + 3z &= 4 \\
y + 6z &= 2 (L_2) \iff (L_1) - (L_2) \\
\iff\] \[\begin{align*}
x &= 4 - \frac{15}{2} z \\
y &= 2 - 6z
\end{align*}\]
Ainsi, une représentation paramétrique de l’intersection de \((P_1)\) et \((P_2)\) est :
\[
\begin{align*}
x &= 4 - \frac{15}{2} t \\
y &= 2 - 6t \\
z &= t, t \in \mathbb{R}
\end{align*}\]

Corrigé de l’exercice 8.

1 Les vecteurs \(\overrightarrow{AE} \begin{pmatrix} 0 \\ 0 \end{pmatrix}\) et \(\overrightarrow{AI} \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}\) ne sont pas colinéaires et appartiennent au plan \((AEJI)\).
De plus, \(\overrightarrow{u} \cdot \overrightarrow{AE} = 0 \times 1 + 0 \times \left(-\frac{1}{2}\right) + 1 \times 0 = 0\) et \(\overrightarrow{u} \cdot \overrightarrow{AI} = \frac{1}{2} \times 1 + 1 \times \left(-\frac{1}{2}\right) + 0 \times 0 = 0\).
Ainsi, \(\overrightarrow{u}\) est orthogonal aux vecteurs \(\overrightarrow{AE}\) et \(\overrightarrow{AI}\); donc \(\overrightarrow{u}\) est normal au plan \((AEJI)\).
L’équation cartésienne du plan (AEJI) est de la forme $ax + by + cz + d = 0$, où $\overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur normal au plan. Ainsi :

$(AEJI) : x - \frac{1}{2}y + d = 0$

De plus, $A \in (AEJI)$ donc ses coordonnées vérifient l’équation d’où : $d = 0$. On a alors :

$(AEJI) : x - \frac{1}{2}y = 0$

La distance nous est donnée, mais on peut la calculer à l’aide de la formule suivante (qui n’est plus au programme) :

$$d(K, (AEJI)) = \frac{|ax_K + by_K + cz_K + d|}{\sqrt{a^2 + b^2 + c^2}}$$

où $(AEJI) : ax + by + cz + d = 0$. Ainsi :

$$d(K, (AEJI)) = \frac{|-\frac{1}{2}|}{\sqrt{1^2 + (-\frac{1}{2})^2}} = \frac{1}{2\sqrt{5}}$$

Le volume de la pyramide AEJIK est :

$$V = B \times h$$

où B est l’aire de la base (ici AEJI) et h la hauteur (celle que nous avons calculé dans la question précédente). Donc :

$$V = AE \times AI \times \frac{1}{\sqrt{5}} = 1 \times \frac{\sqrt{5}}{2} \times \frac{1}{\sqrt{5}}$$

Ainsi :

$$V = \frac{1}{2}$$

Nous savons qu’une représentation paramétrique de D est de la forme :

$$\begin{cases} x = x_K + at \\ y = y_K + bt \\ z = z_K + ct \end{cases}, t \in \mathbb{R}$$

où $K(x_K; y_K, z_K) \in D$ et où $\overrightarrow{u} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur normal à D. Ainsi :

$$\begin{cases} x = t \\ y = 1 - \frac{1}{2}t \\ z = \frac{1}{2} \end{cases}, t \in \mathbb{R}$$

Nommons H le pied de la hauteur de la pyramide AEJIK issue du sommet K. Alors, $H \in D$ et $H \in (AEJI)$, ce qui se traduit de façon analytique de la façon suivante (on remplace x par t et y par $1 - \frac{1}{2}t$ dans l’équation cartésienne de $(AEJI)$) :

$$t - \frac{1}{2}(1 - \frac{1}{2}) = 0$$
On trouve alors :
\[t = \frac{2}{5} \]

D'où :
\[
\begin{cases}
 x_H = \frac{2}{5} \\
 y_H = 1 - \frac{1}{2} \times \frac{2}{5} = 1 - \frac{1}{5} = \frac{4}{5} \\
 z_H = \frac{1}{2}
\end{cases}
\]

Ainsi :
\[H \left(\frac{2}{5}; \frac{4}{5}; \frac{1}{2} \right) \]

Corrigé de l'exercice 9.

1. Nous savons que si \(\vec{\alpha} \left(\begin{smallmatrix} a \\ b \\ c \end{smallmatrix} \right) \) est un vecteur normal au plan \((P)\), alors une équation cartésienne du plan sera :
\[ax + by + cz + d = 0 \]

Nous savons ici que \(\overrightarrow{AB} \left(\begin{smallmatrix} 3 - 1 \\ 2 - 1 \\ 0 - 1 \end{smallmatrix} \right) = \left(\begin{smallmatrix} 2 \\ 1 \\ -1 \end{smallmatrix} \right) \) est normal à \((P)\) donc une équation de ce plan est :
\[2x + y - z + d = 0 \]

Or, \(B \in (P) \) donc ses coordonnées vérifient l’équation :
\[2x_B + y_B - z_B + d = 0 \]

Soit :
\[6 + 2 + d = 0 \]

Donc :
\[d = -8 \]

Ainsi :
\[(P) : 2x + y - z - 8 = 0 \]

2. Ici, la question est large ... En effet, l’énoncé ne nous dit pas quel type d’équation il faut établir : une équation cartésienne, paramétrique ou polaire ? On suppose qu’il s’agit ici d’une équation cartésienne.

Or, une équation cartésienne d’une sphère de centre \((x_A; y_A; z_A)\) et de rayon \(r\) est :
\[(x - x_A)^2 + (y - y_A)^2 + (z - z_A)^2 = r^2 \]

On a :
\[\| \overrightarrow{AB} \| = \sqrt{2^2 + 1^2 + (-1)^2} = \sqrt{6} \]

Ainsi :
\[(S) : (x - 1)^2 + (y - 1)^2 + (z - 1)^2 = \left(\sqrt{6} \right)^2 \]

Soit :
\[(S) : x^2 - 2x + 1 + y^2 - 2y + 1 + z^2 - 2z + 1 = 6 \]

Ou encore :
\[(S) : x^2 + y^2 + z^2 - 2(x + y + z) = 3 \]
a. La distance du point $A(x_A; y_A; z_A)$ au plan (Q) d’équation $ax + by + cz + d = 0$ est donnée par la formule :

$$d(A, (Q)) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Ainsi, ici :

$$d(A, (Q)) = \frac{|1 \times 1 + (-1) \times 1 + 2 \times 1 + 4|}{\sqrt{1^2 + (-1)^2 + 2^2}} = \frac{6}{\sqrt{6}} = \sqrt{6}$$

La distance du point A au plan (Q) est donc égale à $\sqrt{6}$.

Cette distance étant égale au rayon de la sphère (S), on peut affirmer que le plan (Q) est tangent à (S).

b. Calculons la distance du point A au plan (P) :

$$d(A, (P)) = \frac{|2 \times 1 + 1 - 1 - 8|}{\sqrt{2^2 + 1^2 + (-1)^2}} = \frac{6}{\sqrt{6}} = \sqrt{6} = AB$$

Ainsi, (P) est aussi tangent à (S).

4 a. Nous venons de montrer que les plans (P) et (Q) étaient tous les deux tangents à la sphère (S). Ainsi, s’ils sont parallèles, les points en lesquels ils sont tangents à (S), c’est-à-dire C et un autre point, que nous nommerons $C'(a; b; c)$, devraient être diamétralement opposés.

Ainsi :

$$\begin{cases} x_A = \frac{xc+a}{2} \\ y_A = \frac{yc+b}{2} \\ z_A = \frac{zc+c}{2} \end{cases} \implies \begin{cases} 1 = \frac{a}{2} \\ 1 = \frac{2+b}{2} \\ 1 = \frac{-1+c}{2} \end{cases} \implies \begin{cases} a = 2 \\ b = 0 \\ c = 3 \end{cases}$$

Si $C' \in (P)$ alors ses coordonnées vérifient l’équation cartésienne de (P); or :

$$2 \times 2 + 0 - 3 - 8 = -7 \neq 0$$

Ce qui signifie que $C' \notin (P)$. Ainsi, (P) et (Q) ne sont pas parallèles ; ils sont donc sécants.

b. (P) et (Q) sont sécants donc, si $M(x; y; z) \in (P) \cap (Q)$, alors :

$$\begin{cases} 2x + y - z - 8 = 0 \\ x - y + 2z + 4 = 0 \end{cases}$$

Donc, en ajoutant les deux lignes pour obtenir la nouvelle seconde ligne :

$$\begin{cases} 2x + y - z - 8 = 0 \\ 3x + z - 4 = 0 \end{cases}$$

soit :

$$\begin{cases} 2x + y - z - 8 = 0 \\ z = 4 - 3x \end{cases}$$

Ainsi :

$$\begin{cases} 2x + y - (4 - 3x) - 8 = 0 \\ z = 4 - 3x \end{cases}$$

d'où :

$$\begin{cases} 5x + y - 12 = 0 \\ z = 4 - 3x \end{cases}$$
Finalement, on a :
\[
\begin{align*}
y &= 12 - 5x \\
z &= 4 - 3x
\end{align*}
\]
En posant \(t = x \), on a alors :
\[
(D) : \begin{cases}
x = t \\y = 12 - 5t, \, t \in \mathbb{R} \\z = 4 - 3t
\end{cases}
\]

\(c. \) Injectons les coordonnées du point \(A \) dans l’équation paramétrique de \((D)\) :
\[
\begin{align*}
1 &= t \\
1 &= 12 - 5t \\
1 &= 4 - 3t
\end{align*}
\]
Ce système n’admet aucune solution ; en effet, la première ligne nous dit que \(t = 1 \). Or, si nous remplaçons \(t \) par \(1 \) dans la seconde ligne, cela nous donne l’égalité : « \(1=7 \) », ce qui est faux.
Par conséquent, \(A \) n’appartient pas à \((D)\).

\(d. \) Montrons que le plan \((R)\) est le plan médiateur de \([BC]\).
\[
\overrightarrow{BC} \left(\begin{array}{c} -3 \\ 0 \\ -1 \end{array} \right); \text{ posons } I \left(\frac{x_B + x_C}{2}; \frac{y_B + y_C}{2}; \frac{z_B + z_C}{2} \right) = \left(\frac{3+0}{2}; \frac{2+2}{2}; \frac{0-1}{2} \right) = \left(\frac{3}{2}; 2; -\frac{1}{2} \right) \text{ le milieu de } [BC].
\]
Soit \(M(x; y; z) \) un point du plan médiateur de \([BC]\). Alors :
\[
\overrightarrow{IM}.\overrightarrow{BC} = 0
\]
Soit :
\[
-3 \left(x - \frac{3}{2} \right) + 0 \times (y - 2) - 1 \times \left(z + \frac{1}{2} \right) = 0
\]
Soit :
\[
-3x - z + 4 = 0
\]
Les coordonnées du point \(A \) vérifient cette dernière équation ; en effet, \(-3 \times 1 - 1 + 4 = 0\). Donc \(A \) appartient au plan médiateur de \([BC]\).
De plus, n’importe quel point de \((D)\), de coordonnées \((t; 12 - 5t; 4 - 3t), t \in \mathbb{R}\), appartient aussi à ce plan ; en effet, \(-3t - (4 - 3t) + 4 = 0\).
Ainsi, le plan défini par le point \(A \) et par la droite \((D)\), c’est-à-dire \((R)\), est le plan médiateur de \([BC]\). Donc tout point de \((R)\) est équidistant des points \(B \) et \(C \).
Divison euclidienne – Multiples et diviseurs

■ Exercice 1. Critère de divisibilité
(Source : ts-spe-arithmetique-03)
On pose $A_n = 2n^2 + 11n + 32$ et $B_n = n + 3$ pour tout entier relatif n.
On se demande pour quelles valeurs de n B_n divise A_n.
1 Montrer que $A_n = (n + 3)(2n + 5) + 17$.
2 Conclure.

■ Exercice 2. Avec une somme géométrique
(Source : ts-spe-arithmetique-04)
On souhaite démontrer que $5^n + 19$ est toujours divisible par 4 pour tout entier naturel n.
1 Exprimer de façon plus simple la somme $1 + 5 + 5^2 + \cdots + 5^{n-1}$ en fonction de n.
2 Conclure.

■ Exercice 3. Divisibilité par 2 et 3
(Source : ts-spe-arithmetique-05)
Démontrer que pour tout entier relatif p, $p(p^2 - 1)$ est divisible par 2 et par 3.

■ Exercice 4. Divisibilité par 8
(Source : ts-spe-arithmetique-06)
Démontrer que pour tout entier naturel n impair, $n^2 - 1$ est divisible par 8.

■ Exercice 5. Reste de la division euclidienne par 11
(Source : ts-spe-arithmetique-07)
1 Déterminer le reste de la division euclidienne de 100 par 11, de 1 000 par 11, de 10 000 par 11, de 100 000 par 11.
 Quelle conjecture peut-on alors faire?
2 Démontrer la conjecture.
Exercice 6. Critère de divisibilité par 7 sans calculatrice
(Source : ts-spe-arithmetique-08)

1. On considère un nombre à deux chiffres. On note d le chiffre des dizaines et u celui des unités.
 Montrer qu’il est divisible par 7 si et seulement si $3d + u$ est divisible par 7.

2. Comment appliqueriez-vous ce critère pour vérifier que 392 est bien divisible par 7 ?

3. Le nombre 6119 est-il divisible par 7 ?

Exercice 7. Divisibilité par 10 et 20
(Source : ts-spe-arithmetique-09)

1. Soit a un entier naturel.
 Montrer que $a^5 - a$ est divisible par 10.

2. Soient a et b deux entiers naturels tels que $a \geq b$.
 Démontrer que si $a^5 - b^5$ est divisible par 10, alors $a^2 - b^2$ est divisible par 20.

Exercice 8. Calcul d’un maximum
(Source : ts-spe-arithmetique-32)

Calculer la plus grande valeur de l’entier naturel n telle que 3^n divise $1000!$.

Nombres premiers – Nombres premiers entre eux

Exercice 9. Nombres premiers entre eux
(Source : ts-spe-arithmetique-17)

Soit un entier naturel n non nul.
On pose alors $a_n = 2n$ et $b_n = 3n + 1$.
Démontrer l’équivalence suivante :

$$\text{pgcd}(a_n ; b_n) = 1 \iff n \in 2\mathbb{N}^*$$

où $2\mathbb{N}^*$ est l’ensemble des entiers naturels pairs non nuls.

Exercice 10. Nombres premiers entre eux
(Source : ts-spe-arithmetique-18)

Montrer que si p est un nombre premier, alors il n’existe pas de rationnel x tel que $x^2 = p$.

Exercice 11. Nombre premier
(Source : ts-spe-arithmetique-19)

1 789 est-il un nombre premier ?

Exercice 12. Nombres premiers
(Source : ts-spe-arithmetique-21)

1 Montrer que pour tout entier naturel n, les nombres n, $n+2$ et $n+10$ sont distincts modulo 3.

2 En déduire que l’on ne peut pas trouver un entier naturel $n > 3$ tel que n, $n + 2$ et $n + 10$ soient tous les trois premiers.
Théorème de Gauss – Théorème de Bézout

■ Exercice 13. $31x - 28y = 1$
(Source : ts-spe-arithmetique-10)

 Trouver alors deux nombres relatifs x et y tels que $31x - 28y = 1$.
2. Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l’équation $31x - 28y = 1$.

■ Exercice 14. $108x + 55y = 1$
(Source : ts-spe-arithmetique-11)

Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l’équation $108x + 55y = 1$.

■ Exercice 15. Trouver le nombre d’hommes et de femmes
(Source : ts-spe-arithmetique-12)

Au 8ème siècle, un groupe composé d’hommes et de femmes a dépensé 100 pièces de monnaie dans une auberge. Les hommes ont dépensé 8 pièces chacun et les femmes 5 pièces chacune.
Combien pouvait-il y avoir d’hommes et de femmes dans le groupe ?

■ Exercice 16. Avec la notion de pgcd
(Source : ts-spe-arithmetique-35)

Soient a, b et c trois entiers naturels tels que $bc > a$.
Montrer que $\text{pgcd} (bc - a ; b) = \text{pgcd} (a ; b)$.

PGCD – PPCM

■ Exercice 17. Nombres premiers entre eux
(Source : ts-spe-arithmetique-13)

Montrer que si a et b sont premiers entre eux, alors $3a + 5b$ et $a + 2b$ sont également premiers entre eux.

■ Exercice 18. Avec une équation diophantienne
(Source : ts-spe-arithmetique-14)

On pose $x = 9(k + 3)$ et $y = 4k$, où $k \in \mathbb{Z}$.
Montrer que $\text{pgcd}(x ; y)$ divise 108.

■ Exercice 19. Divisibilité
(Source : ts-spe-arithmetique-15)

Le nombre n est un entier naturel non nul.
On pose $a = 4n + 3$ et $b = 5n + 2$. On note d le PGCD de a et b.

1. Donner la valeur de d dans les cas suivants : $n = 1$, $n = 11$, $n = 15$.
2. Calculer $5a - 4b$ et en déduire les valeurs possibles de d.
3. a. Déterminer les entiers naturels n et k tels que $4n + 3 = 7k$.
 b. Déterminer les entiers naturels n et k' tels que $5n + 2 = 7k'$.
4. Soit r le reste de la division euclidienne de n par 7.
 Déduire des questions précédentes la valeur de r pour laquelle d vaut 7.
 Pour quelles valeurs de r d est-il égal à 1 ?

233
Congruences

- **Exercice 20. Divisibilité de $a^6 - b^6$ par 3**
 (Source : ts-spe-arithmetique-31)
 Corrigé page 246
 Soient a et b deux nombres relatifs, tous les deux non divisibles par 3. Montrer que $a^6 - b^6$ est divisible par 3.

- **Exercice 21. Reste d’une division par 7**
 (Source : ts-spe-arithmetique-16)
 Corrigé page 246
 Quel est le reste de la division par 7 du nombre 32^{45} ?

- **Exercice 22. Reste d’une division par 7 (bis)**
 (Source : ts-spe-arithmetique-26)
 Corrigé page 246
 Calculer le reste de la division euclidienne de 17^{548} par 7.

- **Exercice 23. Reste d’une division par 14**
 (Source : ts-spe-arithmetique-27)
 Corrigé page 246
 Calculer le reste de la division euclidienne de 13^{1789} par 14.

- **Exercice 24. Reste d’une division par 7 (ter)**
 (Source : ts-spe-arithmetique-28)
 Corrigé page 247
 Trouver tous les entiers naturels n tels que le reste de la division euclidienne de 24^n par 7 soit égal à 3.

- **Exercice 25. Nombre premier et congruences**
 (Source : ts-spe-arithmetique-20)
 Corrigé page 247
 Montrer que si p et $8p^2 + 1$ sont premiers alors $p = 3$.

- **Exercice 26. Divisibilité et congruences**
 (Source : ts-spe-arithmetique-22)
 Corrigé page 247
 Montrer que si 7 divise $a^2 + b^2$, alors 7 divise a et b. La réciproque est-elle vraie ?

- **Exercice 27. PGCD et congruences**
 (Source : ts-spe-arithmetique-23)
 Corrigé page 247
 Soient n, a et b trois entiers naturels. Montrer que si n divise $\gcd(a; b)$ alors n divise x, où $x \equiv a \mod b$.

- **Exercice 28. Combo de congruences**
 (Source : ts-spe-arithmetique-24)
 Corrigé page 248
 Soit n tel que $n \equiv 1 \mod 2$, $n \equiv 2 \mod 3$ et $n \equiv 5 \mod 7$. Quel est le reste de la division euclidienne de n par 42 ?
Exercice 29. Équation $x^2 \equiv -11 \mod 100$

(Répondre dans \mathbb{Z} l’équation $x^2 \equiv -11 \mod 100$.

Exercice 30. Par récurrence

Montrer que pour tout entier naturel n, $(n+1)(n+2)\cdots(2n-1)\times 2n$ est divisible par 2^n et trouver le quotient correspondant.

Exercice 31. $2^{2n} + 15n - 1 \mod 9$

Montrer par récurrence que pour tout entier naturel n, $4^n \equiv 1 + 3^n \mod 9$.
En déduire que $2^{2n} + 15n - 1 \equiv 0 \mod 9$ pour tout entier naturel n.

Exercices de recherches avancées

Exercice 32. Suites et congruences

On considère la suite (u_n) d’entiers naturels définie par $u_0 = 14$ et $u_{n+1} = 5u_n - 6$ pour tout entier naturel n.

1. Calculer u_1, u_2, u_3 et u_4.
 Quelle conjecture peut-on émettre concernant les deux derniers chiffres de u_n?

2. Montrer que, pour tout entier naturel n, $u_{n+2} \equiv u_n \mod 4$.
 En déduire que pour tout entier naturel k, $u_{2k} \equiv 2 \mod 4$ et $u_{2k+1} \equiv 0 \mod 4$.

3. a. Montrer par récurrence que pour tout entier naturel n, $2u_n = 5^{n+2} + 3$.

 b. En déduire que pour tout entier naturel n, $2u_n \equiv 28 \mod 100$.

 Peut-on en conclure que $u_n \equiv 14 \mod 100$?

4. Déterminer les deux derniers chiffres de l’écriture décimale de u_n suivant les valeurs de n et valider ainsi la conjecture faite à la question 1.

5. Montrer que le PGCD de deux termes consécutifs de la suite (u_n) est constant et préciser sa valeur.

Exercice 33. $\sum_{p=1}^{n} p^3$ et pgcd

Dans cet exercice, on pourra utiliser le résultat suivant :
« Étant donnés deux entiers naturels a et b non nuls, si pgcd $(a ; b) = 1$ alors pgcd $(a^2 ; b^2) = 1$. »

La suite $(S_n)_{n \geq 1}$ est définie par :

$$S_n = \sum_{p=1}^{n} p^3.$$

On se propose de déterminer, pour tout entier naturel n non nul, le plus grand commun diviseur de S_n et S_{n+1}.

1. Démontrer que, pour tout entier n non nul, $S_n = \left[\frac{n(n+1)}{2} \right]^2$.

2. Étude du cas où n est pair. Soit k l’entier naturel non nul tel que $n = 2k$.

235
a. Démontrer que \(\gcd(S_{2k}; S_{2k+1}) = (2k + 1)^2 \gcd(k^2; (k + 1)^2) \).
b. Montrer que \(k \) et \(k + 1 \) sont premiers entre eux.
c. En déduire \(\gcd(S_{2k}; S_{2k+1}) \).

3 Étude du cas où \(n \) est impair. Soit \(k \) l’entier naturel non nul tel que \(n = 2k + 1 \).
 a. Démontrer que les entiers \(2k + 1 \) et \(2k + 3 \) sont premiers entre eux.
 b. Déterminer \(\gcd(S_{2k+1}; S_{2k+2}) \).

4 Déduire des questions précédentes qu’il existe une unique valeur de \(n \), que l’on déterminera, pour laquelle \(S_n \) et \(S_{n+1} \) sont premiers entre eux.

Exercice 34. Théorème des restes chinois

(Source : ts-spe-arithmetique-30)

Soient \(m \) et \(n \) deux entiers premiers entre eux.

1 Démontrer que si \((a;b) \in \mathbb{Z} \times \mathbb{Z}\), alors le système \(\begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases} \) admet une unique solution modulo \(mn \).

2 Application : dans une boutique qui vend des macarons, il y a des boîtes de rangement par 5 et par 9.
Une société souhaite acheter un certain nombre de macarons. La préparatrice constate que si elle ne prend que des rangements par 5, il lui reste à la fin 3 macarons. Si elle ne prend que des rangements par 9, il lui reste au final 2 macarons.
Combien la société a-t-elle commandé de macarons sachant que ce nombre est compris entre 100 et 140?

Exercice 35. Le « petit » théorème de Fermat

(Source : ts-spe-arithmetique-34)

Soient \(p \) un nombre premier, \(n \) un entier naturel et \(a \) non divisible par \(p \).

1 Montrer que le reste des divisions euclidiennes par \(p \) de \(a \), \(2a \), ... , \((p - 1)a \) sont tous distincts.

2 En déduire que \(a^{p-1} \equiv 1 \mod p \). (C’est le « petit » théorème de Fermat)

3 Montrer que la réciproque est fausse en utilisant le nombre \(p = 3 \times 11 \times 17 = 561 \).
Corrigé de l'exercice 1.

1 \((n + 3)(2n + 5) + 17 = 2n^2 + 5n + 6n + 15 + 17 = 2n^2 + 11n + 32 = A_n\).

2 \(B_n\) divise \(A_n\) si \(\frac{A_n}{B_n} \in \mathbb{Z}\), pour \(n \neq -3\).

Or,

\[
\frac{A_n}{B_n} = \frac{(n + 3)(2n + 5) + 17}{n + 3} = \frac{(n + 3)(2n + 5)}{n + 3} + \frac{17}{n + 3} = 2n + 5 + \frac{17}{n + 3}.
\]

\((2n + 5) \in \mathbb{Z}\) donc \(\frac{A_n}{B_n} \in \mathbb{Z} \iff (n + 3)|17\).

17 étant un nombre premier, il n’est divisible que par 1 et 17 donc il faut que \(n + 3 = \pm 1\) (i.e. \(n = 1 - 3 = -2\) ou \(n = -1 - 3 = -4\)) ou \(n + 3 = \pm 17\) (i.e. \(n = 17 - 3 = 14\) ou \(n = -17 - 3 = -20\)).

\(B_n\) divise \(A_n\) pour \(n = -2\) et \(n = 14\).

Corrigé de l'exercice 2.

1 On sait que \(1 + q + q^2 + \cdots + q^n = \frac{1 - q^{n+1}}{1 - q}\) pour \(q \neq 1\).

Ainsi,

\[
1 + 5 + 5^2 + \cdots + 5^{n-1} = \frac{1 - 5^n}{1 - 5} = \frac{5^n - 1}{4}.
\]

2 La somme \(1 + 5 + 5^2 + \cdots + 5^{n-1}\) est entière donc \(5^n - 1\) est divisible par 4. Ainsi, \(5^n - 1 + 4k \in \mathbb{N}\) pour tout entier relatif \(k\).

En prenant \(k = 5\), on obtient \(5^n - 1 + 4 \times 5 = 5^n + 19\), donc \(5^n + 19\) est toujours divisible par 4.

Corrigé de l'exercice 3.

1 Divisibilité par 2. Deux cas se présentent :

• \(p\) est pair : \(p = 2k, k \in \mathbb{Z}\). Dans ce cas, \(p(p^2 - 1) = 2k(4k^2 - 1)\) est divisible par 2.
Si p est impair : $p = 2k + 1$, $k \in \mathbb{Z}$. Dans ce cas,

$$p(p^2 - 1) = (2k + 1)(2k + 1)^2 - 1$$

$$= (2k + 1)(4k^2 + 2k + 1 - 1)$$

$$= (2k + 1)(4k^2 + 2k)$$

$$= 2(2k + 1)(2k^2 + k)$$

Ainsi, $p(p^2 - 1)$ est divisible par 2.

Dans tous les cas, le résultat est démontré.

Divisibilité par 3. Trois cas se présentent :

- $p = 3k$, $k \in \mathbb{Z}$. Alors, $p(p^2 - 1) = 3k(9k^2 - 1)$ est divisible par 3.
- $p = 3k + 1$. Alors,

$$p(p^2 - 1) = (3k + 1)(3k + 1)^2 - 1$$

$$= (3k + 1)(9k^2 + 6k)$$

$$= 3k(3k + 2)(3k + 1).$$

Donc $p(p^2 - 1)$ est divisible par 3.

- $p = 3k + 2$. Alors,

$$p(p^2 - 1) = (3k + 2)(3k + 2)^2 - 1$$

$$= (3k + 2)(9k^2 + 12k + 3)$$

$$= 3(3k^2 + 4k + 1)(3k + 2).$$

Donc $p(p^2 - 1)$ est divisible par 3.

Dans tous les cas, $p(p^2 - 1)$ est divisible par 3.

Corrigé de l’exercice 4.

n est impair donc $n = 2k + 1$, $k \in \mathbb{N}$.

Ainsi,

$$n^2 - 1 = (2k + 1)^2 - 1$$

$$= 4k^2 + 4k$$

$$= 4k(k + 1).$$

k et $k + 1$ sont deux entiers consécutifs donc l’un des deux est pair ; ainsi, leur produit est pair et s’écrit donc $k(k + 1) = 2q$, $q \in \mathbb{N}$.

On a donc : $n^2 - 1 = 4 \times 2q = 8q$, ce qui prouve que $n^2 - 1$ est divisible par 8.

Corrigé de l’exercice 5.

1. $10^2 = 100 = 9 \times 11 + 1$

 $10^3 = 1 000 = 90 \times 11 + 10$

 $10^4 = 10 000 = 909 \times 11 + 1$

 $10^5 = 100 000 = 9090 \times 11 + 10$

On peut conjecturer que lorsque n est pair, le reste de la division euclidienne de 10^n par 11 est égal à 1 et lorsqu’il est impair, ce reste est égal à 10.
• Supposons que \(n \) soit un entier naturel pair. Alors, \(n = 2k, \ k \in \mathbb{N} \) et
\[10^n = 10^{2k} = 100^k = (99 + 1)^k. \]
Or,
\[(a + b)^k = \sum_{p=0}^k c_p a^p b^{k-p}, \text{ où les } c_p \text{ sont des coefficients entiers.} \]
Autrement dit,
\[(99 + 1)^k = 99k + 99^{k-1} c_1 + 99^{k-2} c_2 + \cdots + 99 c_{p-1} + 1. \]
Chaque terme de cette somme (sauf le dernier) étant un multiple de 99, le reste de la division euclidienne de \(100^k \) par 11 est égal à 1 (le dernier terme de la somme).
Cela montre que si \(n \) est pair, alors le reste de la division euclidienne de \(10^n \) par 11 est égal à 1.

• Supposons que \(n \) soit impair. Alors, \(n = 2k + 1, \ k \in \mathbb{N} \) et
\[10^n = 10^{2k+1} = 10^2 \times 10^k. \]
D’après ce qui a été fait précédemment, on peut alors écrire :
\[10^2 \times 10^k = 10 \times 99^k + 10 \times 99^{k-1} c_1 + 10 \times 99^{k-2} c_2 + \cdots + 10 \times 99 c_{p-1} + 10. \]
Ainsi, le reste de la division euclidienne de \(10^{2k+1} \) par 11 est égal à 10. La conjecture est alors démontrée.

Corrigé de l’exercice 6.

1.
\[x = 10d + u = (7d + 3d) + u = 7d + (3d + u). \]
\(x \) est divisible par 7 équivaut à dire que \(7d + (3d + u) \) l’est aussi, i.e. que \(3d + u \) est divisible par 7 car \(7d \) l’est toujours.

2. On peut s’inspirer du raisonnement précédent en posant :
\[x = 392 \]
\[= 39 \times 10 + 2 \]
\[= 39 \times (7 + 3) + 2 \]
\[= 39 \times 7 + 3 \times 39 + 2 \]
392 est divisible par 7 si et seulement si \(3 \times 39 + 2 \) l’est aussi.
\[3 \times 39 + 2 = 3 \times (40 - 1) + 2 = 120 - 3 + 2 = 119. \]
On recommence avec 119 :
\[119 = 11 \times 7 + 11 \times 3 + 9. \]
119 est divisible par 7 si et seulement si \(11 \times 3 + 9 \) l’est aussi.
\[11 \times 3 + 9 = 33 + 9 = 42 = 7 \times 6. \]
Ainsi, 119 est divisible par 7, donc 392 aussi.

3.
\[611 \times 3 + 9 = 1 833 + 9 = 1 842. \]
\[184 \times 3 + 2 = 552 + 2 = 554 \]
\[55 \times 3 + 4 = 165 + 4 = 169 \]
\[16 \times 3 + 9 = 48 + 9 = 57 \]
57 n’est pas divisible par 7 donc 6 119 non plus.
Corrigé de l’exercice 7.

1. \(a \in \mathbb{N} \).
 \[a^5 - a = a(a^4 - 1) = a(a^2 - 1)(a^2 + 1) = a(a - 1)(a + 1)(a^2 + 1). \]

 Entre \(a \) et \(a + 1 \), il y a un nombre pair ; donc \(a^5 - a \) est divisible par 2.

 \(a - 1 \), \(a \) et \(a + 1 \) sont trois nombres conséutifs. Si l’un de ces nombres est divisible par 5, alors \(a^5 - 1 \) l’est aussi et donc au final, il est divisible par 10.

 Si aucun des nombres \(a - 1 \), \(a \) et \(a + 1 \) n’est divisible par 5, alors notons \(r \) le reste de la division euclidienne de \(a \) par 5 :
 \[a = 5q + r, \quad 0 \leq r < 5, \quad q \in \mathbb{N}. \]

 Alors, \(a^2 + 1 = (5q + r)^2 + 1 = 25q^2 + 10qr + r^2 + 1 \), avec \(r = 2 \) ou \(r = 3 \).

 - Si \(r = 2 \), \(r^2 + 1 = 5 \);
 - Si \(r = 3 \), \(r^2 + 1 = 10 \).

 Dans les deux cas, \(a^5 - a \) est divisible par 5 et par 2, donc par 10.

2. \(a^5 - b^5 \) divisible par 10.

 Or, on peut écrire :
 \[a^5 - b^5 = a^5 - a + a - (b^5 - b) - b = (a^5 - a) - (b^5 - b) + (a - b). \]

 \(a^5 - a \) et \(b^5 - b \) sont divisibles par 10 d’après la question précédente; ainsi, si \(a^5 - b^5 \) est divisible par 10, \(a - b \) doit l’être aussi.

 Ainsi, \(a - b = 10q, \quad q \in \mathbb{N} \) et donc \(a = 10q + b \). En ajoutant \(b \) dans les deux membres, on obtient \(a + b = 10q + 2b = 2(5q + b) \), et donc \(a + b \) est divisible par 2.

 \(a - b \) est divisible par 10 et \(a + b \) est divisible par 2, donc \((a - b)(a + b) = a^2 - b^2 \) est divisible par 20.

Corrigé de l’exercice 8.

Remarquons que :

\[1000! = (1 \times 2 \times 3 \times \cdots \times 10) \times (11 \times \cdots \times 20) \times \cdots \times (991 \times \cdots \times 1000). \]

Combien de multiples de 3 avons-nous ici ? Il y en a 333 (999 ÷ 3).

On peut donc factoriser ainsi :

\[1000! = 3^{333}(1 \times 2 \times 1 \times 4 \times 5 \times 2 \times 7 \times 8 \times 3 \times 10) \times \cdots \times (991 \times 992 \times 331 \cdots \times 3331 \times 1000). \]

On voit alors apparaître le produit 333! dans lequel il y a 111 multiples de 3. On peut donc écrire :

\[333! = 3^{111}(1 \times 2 \times 1 \times \cdots \times 111). \]

On voit apparaître 111! dans lequel il y a 37 multiples de 3 (3, 6, 9, ..., 99, 102, 105, 108, 111). On peut donc écrire :

\[111! = 3^{37}(1 \times 2 \times 1 \times \cdots \times 12 \times 37). \]

De même, on voit 12! apparaître, où il y a 4 multiples de 3 donc on peut écrire :

\[12! = 3^4(1 \times 2 \times 1 \times \cdots \times 4). \]
On voit apparaître 4 ! où il y a 1 multiple de 3 et on peut écrire :

\[4! = 3^1 (1 \times 2 \times 1 \times 4). \]

Finalement, dans 1000 !, on peut mettre en facteur \(3^{333+111+37+4+1} = 3^{486}\).
Ainsi, le plus grand entier \(n\) tel que \(3^n\) divise 1000 ! est \(n = 486\).

■ Corrigé de l’exercice 9.

\[
\begin{align*}
3n + 1 &= 2n + (n + 1), \quad n + 1 < 2n \text{ donc } n > 1 \quad \text{(XI.1)} \\
2n &= 1 \times (n + 1) + (n - 1), \quad n - 1 < n + 1 \text{ (toujours vrai)} \quad \text{(XI.2)} \\
n + 1 &= 1 \times (n - 1) + 2, \quad 2 < n - 1 \text{ donc } n > 3. \quad \text{(XI.3)}
\end{align*}
\]

Deux cas se présentent pour \(n > 3\) :
- \(n \in 2\mathbb{N} \iff n = 2k, k \in \mathbb{N}\). Alors, l’égalité XI.3 donne :
 \[2k + 1 = (2k - 1) + 2, \quad 2k - 1 = k + (k - 1), \quad k = (k - 1) + 1\]
 Dans ce cas, \(\text{pgcd}(a_n; b_n) = 1\).
- \(n \notin 2\mathbb{N} \iff n = 2k + 1, k \in \mathbb{N}\). Alors, l’égalité XI.3 donne :
 \[(2k + 1) + 1 = (2k + 1 - 1) + 2, \quad 2k = 2k + 0\]
 Dans ce cas, \(\text{pgcd}(a_n; b_n) = 2\).

De plus,
- Pour \(n = 1\) : \(a_1 = 2\) et \(b_1 = 4\) donc \(\text{pgcd}(a_1; b_1) = 2\).
- Pour \(n = 2\) : \(a_2 = 4\) et \(b_2 = 7\) donc \(\text{pgcd}(a_2; b_2) = 1\).
- Pour \(n = 3\) : \(a_3 = 6\) et \(b_3 = 10\) donc \(\text{pgcd}(a_3; b_3) = 2\).

On a donc bien :
\[\text{pgcd}(a_n; b_n) = 1 \iff n \in 2\mathbb{N}^*.\]

■ Corrigé de l’exercice 10.

Raisonnons par l’absurde ; supposons donc qu’il existe un rationnel \(x = \frac{a}{b}\) tel que \(x^2 = p\) et \(\text{pgcd}(a; b) = 1\).
Alors, \(\frac{a^2}{b^2} = p, \) soit \(a^2 = pb^2\).
D’après le théorème de Gauss, \(p\) divise donc \(a^2\), donc \(p\) divise \(a\) et alors \(p^2\) divise \(a^2\), donc divise \(pb^2\). Ainsi, \(p\) divise \(b^2\), donc \(p\) divise \(b\).
Or, \(\text{pgcd}(a; b) = 1\) donc il n’est pas possible que \(p\) divise à la fois \(a\) et \(b\).
On aboutit à une contradiction ; par conséquent, notre hypothèse de départ est fausse.
Ainsi, il n’existe pas de rationnel \(x\) tel que \(x^2 = p\).

■ Corrigé de l’exercice 11.

Rappelons que si \(p\) est un nombre premier, alors il n’admet aucun diviseurs inférieurs à \(\sqrt{p}\).
\(\sqrt{1789} \approx 42,3\).
Les nombres premiers inférieurs à 42 sont :
\[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41.\]
On vérifie que aucun d’entre eux ne divise 1789. Par conséquent, 1789 est un nombre premier.
Corrigé de l’exercice 12.

1 Rappelons que a et b sont distincts modulo 3 si et seulement si $(a - b)$ est un multiple de 3.

$n - (n + 2) = -2$ n’est pas un multiple de 3, donc n n’est pas congru à $n + 2$ modulo 3.

$n - (n + 10) = -10$ donc même conclusion.

$(n + 2) - (n + 10) = -8$ donc même conclusion.

Ainsi, n, $n + 2$ et $n + 10$ sont distincts modulo 3.

2 Notons $n \equiv r_1 \mod 3$, $n + 2 \equiv r_2 \mod 3$ et $n + 10 \equiv r_3 \mod 3$.

D’après la question précédente, r_1, r_2 et r_3 dont deux à deux distincts. Or, il n’existe que 3 restes possibles dans la division euclidienne par 3 : 0, 1 ou 2.

Par conséquent, l’un des restes est nul et donc, l’un des nombres n, $n + 2$ et $n + 10$ est divisible par 3. Ce nombre n’est donc pas premier car il ne peut pas être égal à 3 (par hypothèse : $n > 3$).

Corrigé de l’exercice 13.

1 $31 = 1 \times 28 + 3$

$28 = 9 \times 3 + 1$

$3 = 3 \times 1 + 0$

Donc $PGCD(31 ; 28) = 1$.

De l’algorithme précédent, on peut écrire :

$1 = 28 - 9 \times 3$

$= 28 - 9 \times (31 - 28)$

$= 10 \times 28 - 9 \times 31$

Ainsi, si $x = -9$ et $y = -10$, $31x - 28y = 1$.

2 On a :

$31 \times (-9) - 28 \times (-10) = 1$

$31 \times x - 28 \times y = 1$

$31 \times (-9 - x) - 28 \times (-10 - y) = 0$

Ainsi :

$31(-9 - x) = 28(-10 - y)$.

Or, $PGCD(31 ; 28) = 1$ donc d’après le théorème de Gauss, 31 divise $(-10 - y)$ et 28 divise $(-9 - x)$:

$$\begin{cases} -9 - x = 28k \\ -10 - y = 31k \end{cases}, \quad k \in \mathbb{Z}$$

soit :

$$\begin{cases} x = -9 - 28k \\ y = -10 - 31k \end{cases}, \quad k \in \mathbb{Z}$$

Corrigé de l’exercice 14.

1 $108 = 1 \times 55 + 53$

$55 = 1 \times 53 + 2$

$53 = 26 \times 2 + 1$

$2 = 2 \times 1 + 0$

Donc $PGCD(108 ; 55) = 1$.

De l’algorithme précédent, on peut écrire :

242
1 = 53 − 26 \times 2
= (108 − 55) − 26 \times (55 − 53)
= 108 − 55 − 26 \times 55 + 26 \times 53
= 108 − 27 \times 55 + 26(108 − 55)
= 27 \times 108 − 53 \times 55
Ainsi, si \(x_0 = 27\) et \(y_0 = −53\) sont deux solutions particulières de l’équation diophantienne \(108x + 55y = 1\).

2 On a :
\[
\begin{align*}
108 \times 27 + 55 \times (−53) &= 1 \\
108 \times x + 55 \times y &= 1 \\
108 \times (27 − x) + 55 \times (−53 − y) &= 0
\end{align*}
\]
Ainsi :
\[108(27 − x) = 55(53 + y).\]
Or, \(\text{PGCD}(108; 55) = 1\) donc d’après le théorème de Gauss, 108 divise \((53 + y)\) et 55 divise \((27 − x)\) :
\[
\begin{align*}
27 − x &= 55k \\
53 + y &= 108k
\end{align*}
\]
soit :
\[
\begin{align*}
x &= 27 − 55k \\
y &= −53 + 108k
\end{align*}
\]
\(\therefore\) Corrigé de l’exercice 15.
Notons \(x\) le nombre d’hommes et \(y\) celui de femmes.
L’énoncé nous donne alors l’équation :
\[8x + 5y = 100.\]
Avant tout, trouvons une solution particulière à cette équation.
Il faut que \(y = \frac{100 − 8x}{5} = \frac{100}{5} − \frac{8x}{5} = 20 − \frac{8x}{5}\) soit entier, donc que \(8x\) soit un multiple de 5.
Prenons alors \(x = 5\) et donc \(y = 20 − 8 = 12\).
Une solution particulière est donc \((x_0; y_0) = (5; 12)\).
On a alors :
\[
\begin{align*}
8 \times 5 + 5 \times 12 &= 100 \\
8 \times x + 5 \times y &= 100 \\
8 \times (5 − x) + 5 \times (12 − y) &= 0
\end{align*}
\]
soit :
\[8(5 − x) = 5(y − 12).\]
\(\text{PGCD}(8; 5) = 1\) donc d’après le théorème de Gauss, 8 divise \((y − 12)\) et 5 divise \((5 − x)\) :
\[
\begin{align*}
5 − x &= 5k \\
y − 12 &= 8k
\end{align*}
\]
soit :
\[
\begin{align*}
x &= 5 − 5k \\
y &= 12 + 8k
\end{align*}
\]
On sait que \((x; y) \in \mathbb{N}^* \times \mathbb{N}^*\) ce qui nous laisse peu de choix quant aux valeurs de \(k\) :
- $k = 0$: on a alors $x = 5$ et $y = 12 ;$
- $k = -1$: on a alors $x = 10$ et $y = 4 .$

Il y avait donc 5 hommes et 12 femmes.

Corrigé de l’exercice 16. Notons $d = \gcd (bc - a ; b)$.

- D’après l’égalité de Bézout, il existe un couple d’entiers relatifs $(u ; v)$ tel que $(bc - a)u + bv = d .

\[
(bc - a)u + bv = d \iff bcu - au + bv = d \iff a(-u) + b(cu + v) = d
\]

$-u \in \mathbb{Z}$ et $(cu + v) \in \mathbb{Z}$ donc il existe un couple d’entiers relatifs $(u' ; v')$, avec $u' = -u$ et $v' = cu + v$, tel que $au' + bv' = d .

Donc $\gcd (a ; b)$ divise $d .

- De plus, $d = \gcd (bc - a ; b) \Rightarrow d|b$ et $d|(bc - a) \Rightarrow d|a$ car si $d|b$, alors $d|(bc)$ donc si $d|(bc - a)$, alors nécessairement, $d|a .

Ainsi, $d|a$ et $d|b$ donc $d|\gcd (a ; b)$

Finalement, $\gcd (a ; b)|d$ et $d|\gcd (a ; b)$ donc $d = \gcd (a ; b) .

Corrigé de l’exercice 17.

- Première méthode : nous allons utiliser l’algorithme des différences, vu en classe de 3e.

\[
\gcd (3a + 5b ; a + 2b) = \gcd (a + 2b ; 3a + 5b - (a + 2b))
\]

\[
= \gcd (a + 2b ; 2a + 3b)
\]

\[
= \gcd (a + 2b ; 2a + 3b - (a + 2b))
\]

\[
= \gcd (a + 2b ; a + b)
\]

\[
= \gcd (a + b ; a + 2b - (a + b))
\]

\[
= \gcd (a + b ; b)
\]

\[
= \gcd (b ; a + b - b)
\]

\[
= \gcd (b ; a)
\]

\[= 1 \quad \text{car} \ a \ et \ b \ sont \ premiers \ entre \ eux .
\]

- Deuxième méthode : $\gcd (a ; b) = 1$ donc il existe un couple d’entiers relatifs $(u ; v)$ tel que $au + bv = 1 .

Nous allons montrer qu’il existe un couple d’entiers relatifs $(u' ; v')$ tel que $(3a + 5b)u' + (a + 2b)v' = 1 .

\[
(3a + 5b)u' + (a + 2b)v' = 3au' + 5bu' + au' + 2bv' = a(3u' + v') + b(5u' + 2v').
\]

Pouvons-nous choisir u' et v' de sorte que \[\begin{cases} 3u' + v' = u & (L_1) \\ 5u' + 2v' = v & (L_2) \end{cases} \]

Pour répondre à cette question, cherchons à résoudre ce dernier système.

En faisant $2(L_1) - (L_2)$, on obtient :

\[
u' = 2u - v
\]
et en faisant $−5(L_1) + 3(L_2)$, on obtient :

$$v′ = −5u + 3v.$$

En prenant ces valeurs de $u′$ et $v′$, on a $(3a + 5b)u′ + (a + 2b)v′ = au + v = 1.$
Ainsi, d’après le théorème de Bézout, $\gcd(3a + 5b; a + 2b) = 1.$

Corrigé de l’exercice 18.
Utilisons l’algorithme des différences (et donc la propriété : $\gcd(a; b) = \gcd(a; b − a)$) pour démontrer le résultat :

$$\gcd(x; y) = \gcd(9k + 27; 4k)$$
$$= \gcd(4k; 9k + 27 − 4k)$$
$$= \gcd(5k + 27; 4k)$$
$$= \gcd(k + 27; 4k − (k + 27))$$
$$= \gcd(k + 27; 4k)$$
$$= \gcd(k + 27; 4k − (k + 27))$$
$$= \gcd(k + 27; 3k − 27)$$
$$= \gcd(k + 27; 2k − 54)$$
$$= \gcd(k + 27; k − 81)$$
$$= \gcd(k + 27; 108).$$

Or, $\gcd(k + 27; 108)$ divise 108 (par définition) donc $\gcd(x; y)$ divise 108.

Corrigé de l’exercice 19.
1. $n = 1 : a = 7$ et $b = 7$ donc $\gcd(a; b) = 7.$
2. $n = 11 : a = 47$ et $b = 57$ donc $\gcd(a; b) = 1.$
3. $n = 15 : a = 63$ et $b = 77$ donc $\gcd(a; b) = 7.$

2. $5a − 4b = 5(4n + 3) − 4(5n + 2)$
$$= 20n + 15 − 20n − 8$$
$$= 7.$$
Ainsi, $5\left(\frac{a}{7}\right) − 4\left(\frac{b}{7}\right) = 1.$ De plus, 5 et 7 sont premiers entre eux, et il en est de même pour 4 et 7.
Par conséquent, a et b sont des multiples de 7 et donc $d = \gcd(a; b)$ peut valoir 1 ou 7.

3. $4n + 3 = 7k \iff 4n − 7k = −3.$
Une solution particulière est $(n_0; k_0) = (1; 1).$ On a alors :

$$4 \times 1 − 7 \times 1 = −3$$
$$4 \times n − 7 \times k = −3$$

donc :

$$4(1 − n) − 7(1 − k) = 0$$

245
soit :

\[4(1 - n) = 7(1 - k). \]

4 et 7 étant premiers entre eux, d’après le théorème de Gauss :

\[
\begin{cases}
1 - k = 4q \\
1 - n = 7q
\end{cases}
\quad q \in \mathbb{Z}
\]

soit :

\[
\begin{cases}
k = 1 - 4q \\
n = 1 - 7q
\end{cases}
\quad q \in \mathbb{Z} - (\text{car } n \text{ et } k \text{ doivent être positifs}).
\]

b. Par un raisonnement analogue à celui adopté à la question précédente, on a :

\[
\begin{cases}
k' = 1 - 5q' \\
n = 1 - 7q'
\end{cases}
\quad q' \in \mathbb{Z} -
\]

D’après la question précédente, si le reste de la division euclidienne de \(n \) par 7 est égal à 1, alors \(a \) et \(b \) sont des multiples de 7 et donc \(d = 7 \).

Dans le reste des cas (sans jeu de mot), \(d = 1 \).

■ Corrigé de l’exercice 20.

a n’est pas divisible par 3 donc \(a \equiv 1 \mod 3 \) ou \(a \equiv 2 \mod 3 \). Ainsi, \(a^6 \equiv 1^6 \equiv 1 \mod 3 \) ou \(a \equiv 2^6 \equiv 64 \equiv 1 \mod 3 \) car \(64 = 3 \times 21 + 1 \).

Ainsi, \(a^6 - b^6 \equiv 1 - 1 \equiv 0 \mod 3 \) et donc \(a^6 - b^6 \) est divisible par 3.

■ Corrigé de l’exercice 21.

Nous savons que \(32 = 4 \times 7 + 4 \) donc \(32 \equiv 4 \mod 7 \).

Ainsi, \(32^{45} \equiv 4^{45} \mod 7 \).

Or, \(4^2 = 16 \equiv 2 \mod 7 \) et \(4^3 = 64 \equiv 1 \mod 7 \).

On peut donc écrire :

\[
32^{45} \equiv 4^{3 \times 15} \mod 7
\]

\[
\equiv (4^3)^{15} \mod 7
\]

\[
\equiv 1^{15} \mod 7
\]

\[
\equiv 1 \mod 7.
\]

■ Corrigé de l’exercice 22.

\(17 \equiv 3 \mod 7 \) car \(17 = 2 \times 7 + 3 \).

Ainsi, \(17^2 \equiv 3^2 \equiv 2 \mod 7 \), et donc \(17^6 \equiv 2^3 \equiv 1 \mod 7 \).

On écrit 548 sous la forme : \(548 = 6 \times 91 + 2 \) donc :

\[
17^{548} = (17^6)^{91} \times 17^2
\]

\[
\equiv 1^{91} \times 2 \mod 7
\]

\[
\equiv 2 \mod 7
\]

Ainsi, le reste de la division euclidienne de \(17^{548} \) par 7 est égal à 2.

■ Corrigé de l’exercice 23.

\(13 \equiv -1 \mod 14 \) donc \(13^{1.789} \equiv (-1)^{1.789} \equiv -1 \equiv 13 \mod 14 \).
Corrigé de l’exercice 24.
Remarquons que $24 \equiv 3 \mod 7$ car $24 = 3 \times 7 + 3$.
Ainsi, $24^1 \equiv 3^1 \equiv 3 \mod 7$
$24^2 \equiv 3^2 \equiv 2 \mod 7$
$24^3 \equiv 3^3 \equiv 6 \mod 7$
$24^4 \equiv 3^4 \equiv 4 \mod 7$
$24^5 \equiv 3^5 \equiv 5 \mod 7$
$24^6 \equiv 3^6 \equiv 1 \mod 7$
$24^7 \equiv 3^7 \equiv 3 \mod 7$
La boucle est bouclée pour l’exposant 7 et on peut en conclure que $24^k \equiv 3 \mod 7$, où $k \in \mathbb{N}$.
Ainsi, le reste de la division euclidienne de 24^n par 7 est égal à 3 pour $n \equiv 1 \mod 6$.

Corrigé de l’exercice 25.
• Si $p \equiv 0 \mod 3$, alors p est un multiple de 3. Or, p est premier donc $p = 3$ nécessairement.
• Si $p \equiv 1 \mod 3$, alors $p^2 \equiv 1 \mod 3$ et donc $8p^2 \equiv 8 \equiv 2 \mod 3$, soit $8p^2 + 1 \equiv 0 \mod 3$.
 Donc $8p^2 + 1$ est un multiple de 3 et aussi premier. Donc $8p^2 + 1 = 3$, ce qui est impossible car $p \in \mathbb{N}$.
 Ainsi, p ne peut pas être congru à 1 modulo 3.
• Si $p \equiv 2 \mod 3$, alors $8p^2 + 1 \equiv 0 \mod 3$, ce qui nous ramène à la même conclusion qu’au point précédent.
Ainsi, $p \in \mathbb{P}$ et $8p^2 + 1 \in \mathbb{P} \iff p = 3$.

Corrigé de l’exercice 26.
Supposons que 7 divise $a^2 + b^2$.
Les restes possibles de la division euclidienne de a par 7 sont : 0, 1, 2, 3, 4, 5 ou 6.
 $a \equiv 0 \mod 7 \Rightarrow a^2 \equiv 0 \mod 7$
 $a \equiv 1 \mod 7 \Rightarrow a^2 \equiv 1 \mod 7$
 $a \equiv 2 \mod 7 \Rightarrow a^2 \equiv 4 \mod 7$
 $a \equiv 3 \mod 7 \Rightarrow a^2 \equiv 9 \equiv 2 \mod 7$
 $a \equiv 4 \mod 7 \Rightarrow a^2 \equiv 16 \equiv 2 \mod 7$
 $a \equiv 5 \mod 7 \Rightarrow a^2 \equiv 25 \equiv 4 \mod 7$
 $a \equiv 6 \mod 7 \Rightarrow a^2 \equiv 36 \equiv 1 \mod 7$
Il n’y a donc que 4 restes possibles dans la division euclidienne de a^2 par 7 : 0, 1, 2 ou 4.
Il en est de même pour b^2.
Or, $a^2 + b^2 \equiv 0 \mod 7$ donc seul le couple $(0 ; 0)$ convient.
Ainsi $a \equiv 0 \mod 7$ et $b \equiv 0 \mod 7$, soit 7 divise a et b.
La réciproque est vraie car si 7 divise a et b, alors $a^2 \equiv 0 \mod 7$ et $b^2 \equiv 0 \mod 7$, donc $a^2 + b^2 \equiv 0 \mod 7$.

Corrigé de l’exercice 27.
n divise $\gcd(a ; b) \Rightarrow n \equiv 0 \mod a$ et $n \equiv 0 \mod b$
 $\Rightarrow \begin{cases} a = kn \\ b = k'n \end{cases}$, $(k ; k') \in \mathbb{N} \times \mathbb{N}$
Or, \(x \equiv a \mod b \) donc \(x = bq + a, q \in \mathbb{N} \), soit \(x = k'nq + kn = n(k'q + k) \).
Ainsi, \(n \) divise \(x \).

Corrigé de l'exercice 28.
\[
\begin{align*}
n &\equiv 1 \mod 2 \iff 21n \equiv 21 \mod 42 \\
n &\equiv 2 \mod 3 \iff 14n \equiv 28 \mod 42 \\
n &\equiv 5 \mod 7 \iff 6n \equiv 30 \mod 42
\end{align*}
\]

Or, \(41 \equiv -1 \mod 42 \) et \(79 \equiv -5 \mod 42 \) donc \(-n \equiv -5 \mod 42 \), soit \(n \equiv 5 \mod 42 \).
Le reste de la division euclidienne de \(n \) par 42 est donc égal à 5.

Corrigé de l'exercice 29.
\[
\begin{align*}
x^2 &\equiv -11 \mod 100 \iff x^2 \equiv 300 - 11 \mod 100 \\
&\iff x^2 \equiv 289 \mod 100 \\
&\iff x \equiv 17 \mod 100
\end{align*}
\]

Corrigé de l'exercice 30. Posons \(P_n : (n+1)(n+2) \cdots (2n-1) \times 2n \equiv 0 \mod 2^n \).
Notons \(A_n = (n+1)(n+2) \cdots (2n-1) \times 2n \).
Montrons par récurrence que \(P_n \) est vraie pour tout entier naturel \(n \).
- **Initialisation** : \(P_0 \) est vraie car \(A_0 = 1 \) et \(2^0 = 1 \). On a donc bien \(A_0 \equiv 0 \mod 1 \).
- **Supposons** que pour un entier \(n \) fixé, \(P_n \) est vraie, donc que \(A_n = 2^n B_n \).

\[
A_{n+1} = A_n \times (2n+1)(2n+2)
\]
\[
= 2^n B_n \times 2(2n+1)(n+1)
\]
\[
= 2^{n+1} B_n (2n+1)(n+1).
\]

Ainsi, \(A_{n+1} \) est divisible par \(2^{n+1} \). L’hérédité est alors vérifiée.
Ainsi, \(P_n \) est vraie pour tout entier naturel \(n \).

\[
A_n = \frac{(2n)!}{n!} \quad \text{donc} \quad \frac{A_n}{2^n} = \frac{(2n)!}{2^n(n!)} = 1 \times 3 \times 5 \times \cdots \times (2n-1).
\]

Le quotient de \(A_n \) par \(2^n \) est donc égal à \(\prod_{k=0}^{n-1} (2k+1) \).

Corrigé de l'exercice 31.

1. **Initialisation** : \(4^0 = 1 \) et \(1 + 3 \times 0 = 1 \) donc \(4^n \equiv 1 + 3n \mod 9 \) est vraie pour \(n = 0 \).
 - **Hérédité** : supposons que pour un entier \(n \) fixé, \(4^n \equiv 1 + 3n \mod 9 \).
 Alors, \(4^{n+1} \equiv 4 \times (1 + 3n) \mod 9 \), soit \(4^{n+1} \equiv 4 + 12n \equiv 4 + 3n + 1 + 3(n+1) \mod 9 \).
 L’hérédité est alors vérifiée.
 Ainsi, pour tout entier naturel \(n \), \(4^n \equiv 1 + 3n \mod 9 \).

2. \[
2^{2n} + 15n - 1 \equiv 4^n + 15n - 1 \mod 9
\]
\[
\begin{align*}
&\equiv 1 + 3n + 15n - 1 \mod 9 \\
&\equiv 18n \mod 9 \\
&\equiv 0 \times n \mod 9 \\
&\equiv 0 \mod 9.
\end{align*}
\]
Corrigé de l’exercice 32.

1.
 - $u_1 = 5u_0 - 6 = 5 \times 14 - 6 = 70 - 6 = 64$.
 - $u_2 = 5u_1 - 6 = 5 \times 64 - 6 = 320 - 6 = 314$.
 - $u_3 = 5u_2 - 6 = 5 \times 314 - 6 = 1570 - 6 = 1564$.
 - $u_4 = 5u_3 - 6 = 5 \times 1564 - 6 = 7820 - 6 = 7814$.

2. Pour tout entier naturel n, $u_0 = 4 \equiv 2 \mod 4$ et $u_{n+2} \equiv u_n \mod 4$ donc pour tout entier naturel k, $u_{2k} \equiv u_0 \mod 4$ donc $u_{2k+1} \equiv 2 \mod 4$.

3. a. Posons P_n la propriété : $2u_n = 5^{n+2} + 3$.

 - $P_0 : 2u_0 = 5^2 + 3 = 28$ et nous savons que $u_0 = 14$ donc P_0 est vraie.
 - L’initialisation est alors réalisée.

 - Supposons maintenant que P_n soit vraie pour un entier n donné (hypothèse de récurrence : $2u_n = 5^{n+2} + 3$).

 Alors,
 \[
 2u_{n+1} = 2(5u_n - 6)
 = 5 \times 2u_n - 12
 = 5 \times (5^{n+2} + 3) - 12 \quad \text{par hypothèse de récurrence}
 = 5^{n+3} + 15 - 12
 = 5^{n+3} + 3
 \]

 L’hérité est alors vérifiée.

 Ainsi, P_n est vraie pour tout entier naturel n.

 b. $5^2 = 25 \equiv 25 \mod 100$ et $5^3 = 125 \equiv 25 \mod 100$ donc, par récurrence immédiate, $5^{n+2} \equiv 25 \mod 100$ pour $n \geq 2$.

 Ainsi, $5^{n+2} + 3 \equiv 28 \mod 100$, soit, d’après la question précédente, $2u_n \equiv 28 \mod 100$.

 $\text{pgcd}(2 ; 100) \neq 1$ donc on ne peut pas simplifier par 2 cette dernière congruence. On ne peut donc pas dire que $u_n \equiv 14 \mod 100$.

4. Posons $u_n = 100A_n + B_n$, où A_n et B_n sont deux entiers naturels, avec $0 \leq B_n < 100$.

 Alors, $2u_n = 200A_n + 2B_n \equiv 2B_n \mod 100$.

 Ainsi, d’après la question 3.b, $2B_n \equiv 28 \mod 100$. On en déduit alors que $2B_n = 28$ ou $2B_n = 128$ (car $B_n < 100$), soit $B_n = 14$ ou $B_n = 64$.

 Les deux derniers chiffres de u_n sont donc « 14 » ou « 64 ».

5. D’après la question précédente, quel que soit n, u_n et u_{n+1} sont pairs.

 Donc $\text{pgcd}(u_n ; u_{n+1}) = 2$.

Corrigé de l’exercice 33.

1. Posons : $(P_n) : 1^3 + 2^3 + \cdots + n^3 = \left[\frac{n(n+1)}{2} \right]^2$.

 Démontrons que (P_n) est vraie pour tout entier naturel n non nul.
• Initialisation.

\((\mathcal{P}_0) \) est vraie car \(1^3 = \left\lceil \frac{1 \times (1 + 1)}{2} \right\rceil \).

• Supposons que \((\mathcal{P}_n) \) soient vraie pour un \(n \) non nul donné. Alors,

\[
1^3 + 2^3 + \cdots + n^3 + (n + 1)^3 = \left\lceil \frac{n(n + 1)}{2} \right\rceil^2 + (n + 1)^3
= (n + 1)^2 \left\lceil \frac{n^2}{4} + (n + 1) \right\rceil
= (n + 1)^2 \left\lceil \frac{n^2 + 4n + 4}{4} \right\rceil
= (n + 1)^2 \left\lceil \frac{(n + 2)^2}{4} \right\rceil
= \left\lceil \frac{(n + 1)(n + 2)}{2} \right\rceil^2
\]

Ainsi, \((\mathcal{P}_n) \Rightarrow (\mathcal{P}_{n+1}) \); l’hérédité est alors vérifiée.

La propriété est donc vraie pour tout entier naturel \(n \) non nul.

2 a. \(S_{2k} = \left\lceil \frac{2k(2k + 1)}{2} \right\rceil^2 = k^2(2k + 1)^2 \) et

\[
S_{2k+1} = \left\lceil \frac{(2k + 1)(2k + 2)}{2} \right\rceil^2 = \left\lceil \frac{2(2k + 1)(k + 1)}{2} \right\rceil^2 = (k + 1)^2(2k + 1)^2.
\]

Or, \(\gcd (ka; kb) = k\gcd (a; b) \). Donc,

\[
\gcd (k^2(2k + 1)^2; (k + 1)^2(2k + 1)^2) = (2k + 1)^2\gcd (k^2; (k + 1)^2),
\]

soit :

\[
\gcd (S_{2k}; S_{2k+1}) = (2k + 1)^2\gcd (k^2; (k + 1)^2)
\]

b. \(k \) et \(k + 1 \) sont deux entiers consécutifs ; donc l’un est pair, l’autre impair.

De plus, \(n > 1 \) donc \(k \geq 1 \), soit \(\gcd (k; k + 1) \neq 0 \).

D’où \(\gcd (k; k + 1) = 1 \).

c. De la question précédente et de la propriété admise, on a :

\[
\gcd (k; k + 1) = 1 \Rightarrow \gcd (k^2; (k + 1)^2) = 1,
\]

d’où

\[
(2k + 1)^2\gcd (k^2; (k + 1)^2) = (2k + 1)^2.
\]

Ainsi,

\[
\gcd (S_{2k}; S_{2k+1}) = (2k + 1)^2.
\]

3 a. Si \(k = 0, 2k + 1 = 1 \) et \(2k + 3 = 3 \); on a bien \(\gcd (1; 3) = 1 \).

Supposons maintenant que \(k > 0 \).

\[
2k + 3 = (2k + 1) + 2, \quad 0 \leq 2 < 2k + 1
2k + 1 = 2k + 1, \quad 0 \leq 1 < 2
2 = 2 \times 1 + 0
\]

Le dernier reste non nul est 1.

Par conséquent, \(\gcd (2k + 1; 2k + 3) = 1 \).
b. On :
\[
pgcd (S_{2k+1} ; S_{2k+2}) = \gcd \left(\frac{(2k + 1)^2(2k + 2)^2}{4} ; \frac{(2k + 2)^2(2k + 3)^2}{4} \right)
\]
\[
= \gcd ((2k + 1)^2(k + 1)^2 ; (k + 1)^2(2k + 3)^2)
\]
\[
= (k + 1)^2 \gcd ((2k + 1)^2 ; (2k + 3)^2)
\]
\[
= (k + 1)^2 \times 1
\]
\[
\text{pgcd} (S_{2k+1} ; S_{2k+2}) = (k + 1)^2.
\]

4. Des questions précédentes, on peut déduire que
\[
\begin{align*}
\text{pgcd} (S_k ; S_{k+1}) = 1 \Rightarrow k &= 0 \Rightarrow n = 0 \leftarrow \text{impossible.} \\
\text{pgcd} (S_{k+1} ; S_{k+2}) = 1 \Rightarrow k &= 0 \Rightarrow n = 1.
\end{align*}
\]
Ainsi, il existe une unique valeur de \(n\) pour laquelle \(\text{pgcd} (S_n ; S_{n+1}) = 1 : n = 1.\)

Corrigé de l’exercice 34.

1. Nous allons démontrer l’équivalence entre le système et l’unicité de la solution en démontrant la double implication.

- Montrons que \(\begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases} \Rightarrow x \equiv x_0 \mod (mn).\)

\(m\) et \(n\) sont premiers entre eux donc d’après le théorème de Bézout, il existe un couple \((u ; v)\) d’entiers relatifs tels que \(um + vn = 1.\)

Le système \(\begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases}\) peut s’écrire :

\[
\begin{cases}
x = mk + a \\
x = nk' + b
\end{cases}, \quad (k ; k') \in \mathbb{Z} \times \mathbb{Z}
\]
soit, en multipliant la 1ʳᵉ ligne par \(nv\) et la 2ᵉ par \(mu\) :

\[
\begin{cases}
(nv)x = (nv)mk + (nv)a \\
(mu)x = (mu)nk' + (mu)b
\end{cases}, \quad (k ; k') \in \mathbb{Z} \times \mathbb{Z}.
\]

En ajoutant les deux lignes, on obtient :

\[
(nv + mu)x = mn(vk + uk') + nva + mub
\]
soit :

\[
x = mn(vk + uk') + nva + mub.
\]
Ainsi, si \(x\) est solution du système \(\begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases}\), alors \(x \equiv nva + mub \mod (mn).\)

- Montrons maintenant que \(x \equiv nva + mub \mod (mn) \Rightarrow \begin{cases} x \equiv a \mod m \\ x \equiv b \mod n \end{cases}.\)

Puisque \(m\) et \(n\) sont premiers entre eux, il existe un couple \((u ; v)\) d’entiers relatifs tels que \(um + vn = 1,\) soit \(nv = 1 - mu.\)

Ainsi,

\[
x \equiv nva + mub \mod (mn) \Rightarrow x \equiv nva \mod m \Rightarrow x \equiv (1-mu)a \mod m \Rightarrow x \equiv a \mod m.
\]
De même,
\[x \equiv b \mod n. \]
x est donc solution du système
\[
\begin{cases}
 x \equiv a \mod m \\
 x \equiv b \mod n
\end{cases}
\]

2 Notons \(x \) le nombre de macarons commandés par la société. D’après l’énoncé, on a :

\[
\begin{cases}
 x \equiv 3 \mod 5 \\
 x \equiv 2 \mod 9
\end{cases}
\]

5 et 9 étant premiers entre eux, on utilise le théorème des restes chinois : il existe un couple \((u ; v)\) d’entiers relatifs tels que \(5u + 9v = 1\). On trouve facilement \((u ; v) = (2 ; -1)\).

Dans ce cas, \(x \equiv 9 \times (-1) \times 3 + 5 \times 5 \times 2 \mod (5 \times 9) \), soit \(x \equiv 23 \mod 45 \).

Le nombre compris entre 100 et 140 correspondant est \(x = 23 + 2 \times 45 = 113 \).

La société a donc commandé 113 macarons.

Corrigé de l’exercice 35.

1 Montrons ce résultat par l’absurde. Supposons qu’il existe deux restes égaux \(r \) et \(r' \) et notons pour \(k \in [0 ; p - 1] \) et \(k' \in [0 ; p - 1] \) différent de \(k : \)

\[
ka = pq + r \quad q \in \mathbb{Z}, \quad 0 \leq r < p
\]

\[
k'a = pq' + r' \quad q' \in \mathbb{Z}, \quad 0 \leq r < p
\]

Ainsi, par différence :
\[
(k - k')a = (q - q')p.
\]

\(p \) divise donc \((k - k')a\).

Or, \((k - k') < p \) donc \(p \) ne peut pas diviser \((k - k')\) et donc \(p \) divise \(a \), ce qui est contradictoire avec nos hypothèses.

Par conséquent, il ne peut pas exister deux restes égaux dans la division euclidienne par \(p \) de \(a, 2a, \ldots , (p - 1)a \).

2 D’après ce qui précède :

\[
a \equiv r_1 \mod p
\]

\[
2a \equiv r_2 \mod p
\]

\[
\vdots
\]

\[
(p - 1)a \equiv r_{p-1} \mod p
\]

D’où, par produit :
\[
(p - 1)!a^{p-1} \equiv r_1r_2\cdots r_{p-1} \mod p.
\]

Comme les \(r_i \) sont tous distincts, \(r_1r_2\cdots r_{p-1} = (p - 1)! \) et comme \(\gcd(p ; (p - 1)!) = 1 \), on peut diviser chacun des membres de la congruence par \((p - 1)!\), ce qui donne :

\[
\frac{a^{p-1} - 1}{p} \equiv 1 \mod p
\]

3 Pour tout entier \(a \) tel que \(\gcd(a ; 561) = 1 \), il existe un couple d’entiers relatifs \((u ; v)\) tel que \(au + 561v = 1 \), soit tel que \(au \equiv 1 \mod 561 \).
On utilise 3 fois le petit théorème de Fermat :

\[
\begin{cases}
u^2 \equiv 1 \mod 3 \iff u^{560} \equiv 1 \mod 3 \\
u^{10} \equiv 1 \mod 11 \iff u^{560} \equiv 1 \mod 11 \\
u^{16} \equiv 1 \mod 17 \iff u^{560} \equiv 1 \mod 17
\end{cases}
\]

D'où :

\[u^{560} \equiv r \mod 561 \quad \text{avec} \quad r \equiv 1 \mod 3, r \equiv 1 \mod 11, r \equiv 1 \mod 17.\]

On a alors :

\[r = 3k + 1 = 11k' + 1 = 17k'' + 1,
\]

soit :

\[3k = 11k' = 17k''.
\]

Ainsi, 11 divise \(k\) et 17 divise \(k'\), soit \(k = 11m\) et \(k' = 17m'\).

Alors,

\[r = 3 \times 11m + 1 = 11 \times 17m' + 1
\]

soit :

\[3 \times 11m = 11 \times 17m'
\]

et donc \(3m = 17m'\). Ainsi, 17 divise \(m\) et on peut écrire \(m = 17\lambda\).

On arrive ainsi à : \(r = 3 \times 11 \times 17\lambda + 1\), soit \(r \equiv 1 \mod 561\) et donc \(u^{560} \equiv 1 \mod 561\).

Or, nous avons vu que \(au \equiv 1 \mod 561\) donc \((au)^{560} \equiv 1 \mod 561\).

Comme \(u^{560} \equiv 1 \mod 561\), cela nous donne : \(a^{560} \equiv 1 \mod 561\), où 561 n’est pas un nombre premier.

Ceci prouve que la réciproque du petit théorème de Fermat est fausse.
Énoncés

Enseignement de spécialité : Matrices

A Exercices d’application du cours
B Exercices de réflexion

Exercice & corrigé relus avec attention pour éviter les erreurs

Opérations sur les matrices

■ Exercice 1. Opérations élémentaires
(Source : ts-spe-matrices-01)

On donne les matrices suivantes :

\[A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -5 & 2 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 6 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ 3 & -1 \end{pmatrix} \]

1. Calculer \(A + B \).
2. Calculer \(2A \).
3. Calculer \(AC \).
4. Calculer \(CA \).

■ Exercice 2. À la recherche d’une matrice
(Source : ts-spe-matrices-02)

On considère les matrices \(A = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \) et \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

1. Vérifier que \(AI = IA = A \).
2. Trouver la matrice \(B = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \) telle que \(AB = I \).
3. Vérifier que \(BA = I \).

■ Exercice 3. Puissance d’une matrice et raisonnement par récurrence
(Source : ts-spe-matrices-03)

On considère les matrices :

\[A = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \]

1. Calculer \(A^2 \).
2. Montrer par récurrence que pour tout entier naturel \(n \) non nul, \((I + A)^n = I + nA\).
3. En déduire une expression de \(B^n \) en fonction de \(n \).
Exercice 4. Équation $X^2 = I_2$
(Source : ts-spe-matrices-09)

On souhaite résoudre l’équation $X^2 = I_2$, où $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

1. Exprimer X^2 en fonction de a, b, c et d.
2. En déduire toutes les matrices X possibles.

Exercice 5. Puissance d’une matrice 3×3
(Source : ts-spe-matrices-10)

Soit $A = \begin{pmatrix} 1 & -3 & -2 \\ -1 & 1 & -4 \\ -1 & 2 & -2 \end{pmatrix}$.

2. En déduire une expression de A^n pour tout entier naturel n non nul.

Exercice 6. Puissance d’une matrice 3×3
(Source : ts-spe-matrices-11)

Soit $A = \begin{pmatrix} 1 & -4 & -4 \\ -1 & 1 & 2 \\ 1 & -2 & -3 \end{pmatrix}$.

Calculer A^2, puis en déduire une expression de A^n.

Exercice 7. Puissance d’une matrice 3×3
(Source : ts-spe-matrices-12)

Soit $A = \begin{pmatrix} 1 & -3 & -2 \\ -3 & 1 & 2 \\ 3 & -3 & -4 \end{pmatrix}$.

Calculer A^2 et en déduire A^n en fonction de n.

Exercice 8. Avec une matrice nilpotente
(Source : ts-spe-matrices-05)

On dit qu’une matrice N est nilpotente d’ordre k s’il existe un entier naturel non nul k tel que $N^k = \mathbb{O}$, où \mathbb{O} représente la matrice nulle, c’est-à-dire la matrice dont tous les coefficients sont nuls.

Soient $N = \begin{pmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{pmatrix}$, $A = \begin{pmatrix} 4 & 9 & -9 \\ 2 & 1 & 0 \\ 3 & 3 & -2 \end{pmatrix}$ et $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

1. À l’aide de votre calculatrice, vérifier que N est nilpotente d’ordre 3.
2. En exprimant A en fonction de N et I_3, exprimer A^n pour tout entier naturel n non nul.

Aide – on pourra s’aider de la formule du binôme de Newton : $(A+B)^n = \sum_{k=0}^{k=n} \binom{n}{k} A^k B^{n-k}$, où A et B sont deux matrices quelconques et où :

$$\binom{n}{k} = \frac{2 \times 3 \times 4 \times \cdots \times n}{(2 \times 3 \times \cdots \times k) \times [2 \times 3 \times 4 \times \cdots \times (n-k)]}.$$
Exercice 9. Diagonalisation d’une matrice
(Source : ts-spe-matrices-07)

On considère la matrice $A = \begin{pmatrix} 5 & -3 \\ 4 & -2 \end{pmatrix}$.

L’objectif de cet exercice est de trouver deux matrices $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $D = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix}$ telles que $A = PDP^{-1}$.

On pose $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ la matrice identité.

On rappelle que le déterminant d’une matrice carrée $C = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ est le nombre noté $\det(C) = \alpha \delta - \gamma \beta$.

1. Soit x un nombre réel. Déterminer $P(x) = \det(A - xI_2)$.
2. Déterminer les racines de $P(x)$; on les notera x_1 et x_2, avec $x_1 > x_2$.
3. Calculer $X_1 = A - x_1I_2$ et $X_2 = A - x_2I_2$, puis trouver deux matrices colonnes C_1 et C_2 telles que $X_1C_1 = 0$ et $X_2C_2 = 0$.
4. On décide alors de former la matrice P à l’aide des deux matrices colonnes C_1 et C_2 (la première colonne de P étant la matrice colonne C_1 et la seconde colonne de P, C_2), puis de former la matrice diagonale D à l’aide de x_1 et x_2 trouvés précédemment. Vérifier que $PDP^{-1} = A$.

5. Montrer par récurrence que $D^n = \begin{pmatrix} 2^n & 0 \\ 0 & 1 \end{pmatrix}$ pour tout entier $n \geq 1$.

6. En déduire une expression de A^n, pour $n \geq 1$.

Exercice 10. Triangularisation d’une matrice
(Source : ts-spe-matrices-08)

On considère la matrice $A = \begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}$. On note $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ la matrice identité.

1. Déterminer le polynôme $P(x) = \det(A - xI_2)$, puis déterminer ses racines.
2. Calculer $A - I_2$ puis montrer que la matrice colonne $X = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ est telle que $(A - I_2)X = 0$.

3. On pose $P = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}$ et $T = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$.

Trouver a telle que $PTP^{-1} = A$.

4. Montrer par récurrence que pour tout entier naturel $n \geq 1$, $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.

5. En déduire une expression de A^n en fonction de n.

Exercice 11. Matrice inverse
(Source : ts-spe-matrices-14)

Soient $A = \begin{pmatrix} 1 & -2 & -2 \\ -1 & 0 & -2 \\ -1 & -2 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 1 & 1 \\ -2 & 2 & 0 \end{pmatrix}$.

2. En déduire la matrice inverse de A et de B.
Écritures matricielles (systèmes linéaires)

Exercice 12. Résolutions de systèmes linéaires

(Source: ts-spe-matrices-04) (Corrigé page 264)

À l'aide de votre calculatrice et en associant à chacun des systèmes suivant sa matrice, trouver leurs solutions.

1. \[
\begin{align*}
 x + 2y &= 1 \\
 x + 3y &= 2
\end{align*}
\]
2. \[
\begin{align*}
 3x - 5y &= 7 \\
 2x - 7y &= 5
\end{align*}
\]
3. \[
\begin{align*}
 -x + 2y &= -1 \\
 2x + 4y &= 1
\end{align*}
\]
4. \[
\begin{align*}
 5x + 4y &= 1 \\
 3x + 4y &= 5
\end{align*}
\]
5. \[
\begin{align*}
 x + y - z &= 1 \\
 2x - 3y + z &= -1
\end{align*}
\]
6. \[
\begin{align*}
 x + 2y - z &= 2 \\
 x + 2y + 3z &= 4
\end{align*}
\]

Écritures matricielles (suites numériques)

Exercice 13. Suites imbriquées et matrices

(Source: ts-spe-matrices-06) (Corrigé page 265)

On considère les suites \((u_n)_{n \geq 0}\) et \((v_n)_{n \geq 0}\) définies par leur premier terme \(u_0 = 1\) et \(v_0 = 1\) et, pour tout entier naturel \(n\), par les relations suivantes :

\[
\begin{align*}
 u_{n+1} &= 2u_n + 3v_n + 1 \\
 v_{n+1} &= -u_n - 2v_n - 1
\end{align*}
\]

Ces conditions peuvent s’écrire de façon matricielle sous la forme \(U_{n+1} = AU_n + B\), avec \(U_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}\), \(A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}\) et \(B = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\).

1. Trouver la matrice colonne \(C\) telle que \(C = AC + B\).
2. On pose \(X_n = U_n - C\).
 Montrer que \(X_{n+1} = AX_n\), puis en déduire que \(X_n = A^n X_0\).
3. On pose \(P = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix}\) et \(D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\).
 Vérifier que \(A = PD P^{-1}\), puis en déduire, à l’aide d’un raisonnement par récurrence, que \(A^n = PD^n P^{-1}\) pour \(n \geq 0\).
4. En déduire alors une expression de \(X_n\), puis de \(U_n\), et donc de \(u_n\) et \(v_n\).

Exercice 14. Puissance d’une matrice 3 \times 3

(Source: ts-spe-matrices-13) (Corrigé page 267)

Soit \(A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}\). On considère la suite \((u_n)_{n \geq 1}\) définie par \(u_1 = 1\) et \(u_{n+1} = u_n + 2^n\).

1. Montrer que pour tout entier naturel \(n\), \(A^n = \begin{pmatrix} 1 & 0 & u_n \\ 0 & 1 & 0 \\ 0 & 0 & 2^n \end{pmatrix}\).
En considérant la somme des $u_{n+1} - u_n$, exprimer u_n en fonction de n, puis A^n.

Exercice 15. Système de suites

(Source : ts-spe-matrices-15)

On considère les suites (a_n) et (b_n) définies par $a_0 = 0, 3$, $b_0 = 0, 7$ et :

\[
\begin{align*}
 a_{n+1} &= 0, 7a_n + 0, 6b_n \\
 b_{n+1} &= 0, 3a_n + 0, 4b_n
\end{align*}
\]

Pour tout entier naturel n, on définit la matrice colonne $U_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$.

1. Écrire la matrice A telle que $U_{n+1} = AU_n$.
2. Démontrer par récurrence que pour tout entier naturel n, $U_n = A^n U_0$.
3. À l’aide de la calculatrice ou d’un logiciel de calcul formel, calculer A^2, A^3 et A^4.
 Que peut-on conjecturer quant à $\lim_{n \to +\infty} A^n$, et donc sur la limite des suites (a_n) et (b_n) ?

Exercice 16. Suites imbriquées

(Source : ts-spe-matrices-16)

On considère les suites (a_n) et (b_n) définies par $u_0 = 0$, $v_0 = 1$ et :

\[
\begin{align*}
 u_{n+1} &= \frac{1}{2}(u_n + v_n) \\
 v_{n+1} &= \frac{1}{3}(u_n + 2v_n)
\end{align*}
\]

Pour tout entier naturel n, on définit la matrice colonne $U_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

1. Écrire la matrice A telle que $U_{n+1} = AU_n$.
2. Démontrer par récurrence que pour tout entier naturel n, $U_n = A^n U_0$.
3. On définit les matrices $P = \begin{pmatrix} \frac{4}{5} & \frac{6}{5} \\ -\frac{6}{5} & \frac{6}{5} \end{pmatrix}$ et $Q = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.
 Montrer que P et Q sont inverses l’une de l’autre.
4. Déterminer la matrice diagonale D telle que $QDP = A$.
5. En déduire que pour tout entier naturel n, $U_n = \begin{pmatrix} \frac{3}{5} - \frac{3}{5} \times \left(\frac{1}{3}\right)^n \\ \frac{3}{5} + \frac{2}{5} \times \left(\frac{1}{3}\right)^n \end{pmatrix}$.
6. En déduire la limite des suites (u_n) et (v_n).
Corrigé de l’exercice 1.

1 Pour effectuer une somme de deux matrices de mêmes dimensions, on effectue la somme des coefficients qui sont à la même position.

\[
A + B = \begin{pmatrix} 0 & -1 & 1 \\ 1 & -5 & 2 \end{pmatrix} + \begin{pmatrix} -1 & 2 & -1 \\ -1 & 6 & -1 \end{pmatrix} = \begin{pmatrix} 0 + (-1) & -1 + 2 & 1 + (-1) \\ 1 + (-1) & -5 + 6 & 2 + (-1) \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
\]

2 Pour déterminer 2A, on multiplie tous les coefficients de A par 2 :

\[
2A = 2 \begin{pmatrix} 0 & -1 & 1 \\ 1 & -5 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -2 & 2 \\ 2 & -10 & 4 \end{pmatrix}
\]

3 Le produit AC est :

\[
AC = \begin{pmatrix} 0 & 1 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 \times 1 + (-1) \times 0 + 1 \times 3 & 0 \times (-1) + (-1) \times 2 + 1 \times (-1) \\ 1 \times 1 + (-5) \times 0 + 2 \times 3 & 1 \times (-1) + (-5) \times 2 + 2 \times (-1) \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ 7 & -13 \end{pmatrix}
\]

4 Le produit CA est :

\[
CA = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 1 \\ 1 & -5 & 2 \end{pmatrix} = \begin{pmatrix} 1 \times 0 + (-1) \times 1 & 1 \times (-1) + (-1) \times (-5) & 1 \times 1 + (-1) \times 2 \\ 0 \times 0 + 2 \times 1 & 0 \times (-1) + 2 \times (-5) & 0 \times 1 + 2 \times 2 \\ 3 \times 0 + (-1) \times 1 & 3 \times (-1) + (-1) \times (-5) & 3 \times 1 + (-1) \times 2 \end{pmatrix} = \begin{pmatrix} -1 & 4 & -1 \\ 2 & -10 & 4 \\ -1 & 2 & 1 \end{pmatrix}
\]
Corrigé de l’exercice 2.

1 On a :

\[
AI = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 \times 1 + 2 \times 0 & -1 \times 0 + 2 \times 1 \\ 1 \times 1 + (-1) \times 0 & 1 \times 0 + (-1) \times 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}
\]

\[AI = A\]

De plus,

\[
IA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 \times (-1) + 0 \times 1 & 1 \times 2 + 0 \times (-1) \\ 0 \times 1 + 1 \times 1 & 0 \times 2 + 1 \times (-1) \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}
\]

\[IA = A\]

On a donc bien \(AI = IA = A\).

2 \(AB = I \iff \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)

\[\iff \begin{pmatrix} -x + 2z & -y + 2t \\ x - z & y - t \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

\[\iff \begin{cases} -x + 2z = 1 \\ x - z = 0 \end{cases} \quad \text{et} \quad \begin{cases} -y + 2t = 0 \\ y - t = 1 \end{cases} \]

\[\iff \begin{cases} x + 2z = 1 \\ x = z \end{cases} \quad \text{et} \quad \begin{cases} y = 2t \\ 2t - t = 1 \end{cases} \]

\[\iff x = 1, \ z = 1, \ t = 1, \ y = 2.\]

Ainsi, \[B = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}\].

3 \(BA = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \)

\[BA = \begin{pmatrix} 1 \times (-1) + 2 \times 1 & 1 \times 2 + 2 \times (-1) \\ 1 \times (-1) + 1 \times 1 & 1 \times 2 + 1 \times (-1) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I\]

Corrigé de l’exercice 3.

1 \(A^2 = \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -1 & -2 \end{pmatrix} \)

\[A^2 = \begin{pmatrix} 2 \times 2 + 4 \times (-1) & 2 \times 4 + 4 \times (-2) \\ -1 \times 2 + (-2) \times (-1) & -1 \times 4 + (-1) \times (-2) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\]
2. **Initialisation.**

\[(I + A)^1 = I + A = I + 1A\] donc l’initialisation est faite.

3. **Hérédité.**

Supposons que pour un entier \(k\) strictement positif donné, \((I + A)^k = I + kA\).

\[(I + A)^{k+1} = (I + A)^k (I + A)\]

par hypothèse de récurrence

\[= I^2 + IA + kAI + kA^2\]

en distribuant

\[= I + A + kA\]

car \(A^2\) s’annule et \(IA = AI = A\)

\[= I + (1 + k)A.\]

L’hérédité est alors vérifiée.

L’égalité est alors vraie pour tout entier naturel non nul.

- On peut remarquer que \(B = I + A\); ainsi, d’après la question précédente,

\[B^n = I + nA = \begin{pmatrix} 1 & 2n & 4n \\ -n & 1 & 2n \end{pmatrix}\]

Corrigé de l’exercice 4.

1. \(X^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & b(a + d) \\ c(a + d) & d^2 + bc \end{pmatrix}\)

2. On veut que \(X^2 = I_2\) donc

\[\begin{pmatrix} a^2 + bc & b(a + d) \\ c(a + d) & d^2 + bc \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\]

Ainsi, on a le système :

\[
\begin{align*}
 a^2 + bc &= 0 \\
 b(a + d) &= 0 \\
 c(a + d) &= 0 \\
 d^2 + bc &= 0
\end{align*}
\]

On déduit de l’équation \(b(a + d) = 0\) que \(b = 0\) ou \(a + d = 0\), puis de l’équation \(c(a + d) = 0\) que \(c = 0\) ou \(a + d = 0\).

- Si \(b = 0\), alors \(a^2 = 0\) (donc \(a = 0\)), \(d^2 = 0\) (donc \(d = 0\)) et \(c(a + d) = 0\) donc \(c \times 0 = 0\), ce qui est toujours possible.

Dans ce cas, \(X = \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}\), \(c \in \mathbb{R}\).

- Si \(b \neq 0\), alors \(a + d = 0\) donc \(d = -a\). Ainsi, \(a^2 + bc = 0\) et donc \(c = -\frac{a^2}{b}\).

Dans ce cas, \(X = \begin{pmatrix} a & b \\ -\frac{a^2}{b} & -a \end{pmatrix}\)

Corrigé de l’exercice 5.

1. \(A^3 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I_3.\)

2. Si \(n = 3k\), \(A^n = (2I_3)^k = 2^k I_3.\)

- Si \(n = 3k + 1\), \(A^n = (2I_3)^k A = 2^k \ A.\)

- Si \(n = 3k + 2\), \(A^n = (2I_3)^k A^2 = 2^k A^2.\)
Corrigé de l’exercice 6.
\(A^2 = I_3\) donc :
- Si \(n = 2k\), \(A^n = I_3\).
- Si \(n = 2k + 1\), \(A^n = A\).

Corrigé de l’exercice 7.
\(A^2 = 4I_3\).
- Si \(n = 2k\), \(A^n = (A^2)^k = (4I_3)^k = 4^kI_3\).
- Si \(n = 2k + 1\), \(A^n = (A^2)^k A = 4^k A\).

Corrigé de l’exercice 8.
1. On trouve \(N^2 = \begin{pmatrix} 0 & 0 & 0 \\ 6 & 18 & -18 \\ 6 & 18 & -18 \end{pmatrix}\) et \(N^3 = \emptyset\).
2. \(A = N - I_3\) donc \(A^n = (N - I_3)^n = \sum_{k=0}^{n} \binom{n}{k} N^k I_3^{n-k}\) d’après la formule du binôme de Newton.
 Or, \(I_3^{n-k} = I_3\) donc \(A^n = \sum_{k=0}^{n} \binom{n}{k} N^k\).
 De plus, pour \(k \geq 3\), \(N^k = \emptyset\) donc \(A^n = I_3 + nN + \frac{n(n-1)}{2} N^2\).

Corrigé de l’exercice 9.
1. \(A - xI_2 = \begin{pmatrix} 5 & -3 \\ 4 & -2 \end{pmatrix} - \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} 5 - x & -3 \\ 4 & -2 - x \end{pmatrix}\).
 Ainsi, \(\det(A-xI_2) = (5-x)(-2-x) - 4(-3) = -10 - 5x + 2x + x^2 + 12 = x^2 - 3x + 2 = P(x)\).
2. Les deux racines de \(P(x)\) sont \(x_1 = 2\) et \(x_2 = 1\) \((x_1 > x_2)\).
3. \(X_2 = A - I_2 = \begin{pmatrix} 4 & -3 \\ 4 & -3 \end{pmatrix}\) et \(X_1 = A - 2I_2 = \begin{pmatrix} 3 & -3 \\ 4 & -4 \end{pmatrix}\).
 Posons \(C_2 = \begin{pmatrix} x \\ y \end{pmatrix}\); alors, \(X_2 C_2 = 0 \iff 4x - 3y = 0 \iff x = \frac{3}{4} y\). On peut alors prendre, par exemple, \(y = 4\), donc \(x = 3\).
 Ainsi, \(C_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}\).
 Posons \(C_1 = \begin{pmatrix} x \\ y \end{pmatrix}\); alors, \(X_1 C_1 = 0 \iff \begin{cases} 3x - 3y = 0 \\ 4x - 4y = 0 \end{cases} \iff x = y\). On peut alors prendre, par exemple, \(x = y = 1\).
 Ainsi, \(C_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}\).
4. On a : \(P = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix}\). La calculatrice nous donne : \(P^{-1} = \begin{pmatrix} 4 & -3 \\ -1 & 1 \end{pmatrix}\).
 On a alors : \(PDP^{-1} = \begin{pmatrix} 1 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 & -3 \\ -1 & 1 \end{pmatrix} = A\).
5. Initialisation : \(D^1 = D = \begin{pmatrix} 2^1 \\ 0 \\ 0 \end{pmatrix}\).
- Hérédité : supposons que pour un entier \(k \geq 1 \) fixé, \(D^k = \begin{pmatrix} 2^k & 0 \\ 0 & 1 \end{pmatrix} \). Alors :

\[
D^{k+1} = D^k D = \begin{pmatrix} 2^k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^k & 0 \\ 0 & 1 \end{pmatrix}.
\]

L’hérédité est alors vérifiée. Ainsi, pour tout \(n \geq 1 \), \(D^n = \begin{pmatrix} 2^n & 0 \\ 0 & 1 \end{pmatrix} \).

6 On peut voir que :

\[
A^n = (PDP^{-1})(PDP^{-1}) \cdots (PDP^{-1})
\]

Or, \(P^{-1}P = I_2 \) donc :

\[
A^n = PD I_2 D I_2 D \cdots DP^{-1} = PD^n P^{-1} = \left(\begin{array}{cc} 3 & 1 \\ 4 & 1 \end{array} \right) \left(\begin{array}{cc} 2^n & 0 \\ 0 & 1 \end{array} \right) \begin{pmatrix} -1 & 1 \\ 4 & -3 \end{pmatrix} = \left(\begin{array}{cc} 3 & 1 \\ 4 & 1 \end{array} \right) \left(-2^n & 2^n \\ 4 & -3 \end{array} \right) = \begin{pmatrix} -3 \times 2^n + 4 & 3 \times 2^n - 3 \\ 4 - 2^{n+2} & 2^{n+2} - 3 \end{array} \right)
\]

■ Corrigé de l’exercice 10.

1 \(P(x) = \det(A - xI_2) = (x - 1)^2 \). En effet, \(A - xI_2 = \begin{pmatrix} -1 - x & -1 \\ 4 & 3 - x \end{pmatrix} \) donc \(P(x) = (-1 - x)(3 - x) - 4(-1) = x^2 - 2x + 1 = (x - 1)^2 \). Ainsi, \(P \) admet une racine double : \(x = 1 \).

2 \(A - I_2 = \begin{pmatrix} -2 & -1 \\ 4 & 2 \end{pmatrix} \) donc \((A - I_2)X = \begin{pmatrix} -2 & -1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ -4 + 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \).

3 On a :

\[
PTP^{-1} = \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 - 2a & -a \\ 4a & 2a + 1 \end{pmatrix}
\]

On veut :

\[
\begin{pmatrix} 1 - 2a & -a \\ 4a & 2a + 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}
\]

d'où \(a = 1 \).

4 • Initialisation : \(T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \) : la formule est vraie pour \(n = 1 \).

• Hérédité : on suppose que pour un \(k \geq 1 \) fixé, \(T^k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \).

\[
T^{k+1} = T^k T = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & k + 1 \\ 0 & 1 \end{pmatrix}
\]

L’hérédité est alors vérifiée. La formule est ainsi vraie pour tout \(n \geq 1 \).
\[A^n = (PTP^{-1})^n = PT^nP^{-1} = \begin{pmatrix} -2n + 1 & -n \\ 4n & 2n + 1 \end{pmatrix}. \]

Corrigé de l’exercice 11.

1. \(A^2 + A = 6I_3 \) et \(B^2 - 3B = 4I_3 \).
2. De \(A^2 + A = 6I_3 \), on en déduit que \(A(A + I_3) = 6I_3 \) donc \(A \times \frac{1}{6}(A + I_3) = I_3 \) donc l’inverse de \(A \) est :

\[
A^{-1} = \frac{1}{6}(A + I_3) = A^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{6} & \frac{1}{6} & -\frac{1}{6} \\ -\frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \end{pmatrix}
\]

De \(B^2 - 3B = 4I_3 \), on déduit que \(B(B - 3I_3) = 4I_3 \), soit \(B \times \frac{1}{4}(B - 3I_3) = I_3 \) donc :

\[
B^{-1} = \frac{1}{4}(B - 3I_3) = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{4} \\ -\frac{1}{2} & \frac{1}{2} & -\frac{3}{4} \end{pmatrix}
\]

Corrigé de l’exercice 12.

1. Le système \(\begin{cases} x + 2y = 1 \\ x + 3y = 2 \end{cases} \) peut être écrit sous la forme matricielle \(AX = B \) avec \(A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \), \(X = \begin{pmatrix} x \\ y \end{pmatrix} \) et \(B = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \).

Il admet un unique couple de solutions si \(A \) est inversible.

À la calculatrice, on trouve : \(A^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} \) donc \(X = A^{-1}B = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \).

L’unique solution du système est donc le couple \((-1; 1)\).

2. Le système \(\begin{cases} 3x - 5y = 7 \\ 2x - 7y = 5 \end{cases} \) peut être écrit sous la forme matricielle \(AX = B \) avec \(A = \begin{pmatrix} 3 & -5 \\ 2 & -7 \end{pmatrix}, \ X = \begin{pmatrix} x \\ y \end{pmatrix} \) et \(B = \begin{pmatrix} 7 \\ 5 \end{pmatrix} \).

Il admet un unique couple de solutions si \(A \) est inversible.

À la calculatrice, on trouve : \(A^{-1} = \frac{1}{11} \begin{pmatrix} 7 & -5 \\ 2 & -3 \end{pmatrix} \) donc \(X = A^{-1}B = \frac{1}{11} \begin{pmatrix} 24 \\ -1 \end{pmatrix} \).

L’unique solution du système est donc le couple \((\frac{24}{11}; -\frac{1}{11})\).

3. Le système \(\begin{cases} -x + 2y = -1 \\ 2x + 4y = 1 \end{cases} \) peut être écrit sous la forme matricielle \(AX = B \) avec \(A = \begin{pmatrix} -1 & 2 \\ 2 & 4 \end{pmatrix}, \ X = \begin{pmatrix} x \\ y \end{pmatrix} \) et \(B = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \).

Il admet un unique couple de solutions si \(A \) est inversible.

À la calculatrice, on trouve : \(A^{-1} = \frac{1}{8} \begin{pmatrix} -4 & 2 \\ 2 & 1 \end{pmatrix} \) donc \(X = A^{-1}B = \frac{1}{8} \begin{pmatrix} 6 \\ -1 \end{pmatrix} \).

L’unique solution du système est donc le couple \((\frac{3}{4}; -\frac{1}{8})\).
Le système \(\begin{cases} 5x + 4y = -3 \\ 3x + 4y = 5 \end{cases} \) peut être écrit sous la forme matricielle \(AX = B \) avec
\[
A = \begin{pmatrix} 5 & 4 \\ 3 & 4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } B = \begin{pmatrix} -3 \\ 5 \end{pmatrix}.
\]
Il admet un unique couple de solutions si \(A \) est inversible.
À la calculatrice, on trouve : \(A^{-1} = \frac{1}{8} \begin{pmatrix} 4 & -4 \\ -3 & 5 \end{pmatrix} \) donc \(X = A^{-1}B = \frac{1}{4} \begin{pmatrix} -16 \\ 17 \end{pmatrix} \).
L’unique solution du système est donc le couple \((-4; \frac{17}{4})\).

Le système \(\begin{cases} x + y - z = 1 \\ 2x - 3y + z = -1 \end{cases} \) peut être écrit sous la forme matricielle \(AX = B \) avec
\[
A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & -3 & 1 \\ 1 & 2 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
\]
Il admet un unique couple de solutions si \(A \) est inversible.
À la calculatrice, on trouve : \(A^{-1} = \frac{1}{3} \begin{pmatrix} -1 & 1 & 2 \\ -3 & 0 & 3 \\ -7 & 1 & 5 \end{pmatrix} \) donc \(X = A^{-1}B = \frac{1}{3} \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix} \).
L’unique solution du système est donc le triplet \((\frac{2}{3}; 1; \frac{2}{3})\).

Le système \(\begin{cases} x + 2y + 3z = 4 \\ 3x + 2y + z = 0 \end{cases} \) peut être écrit sous la forme matricielle \(AX = B \) avec
\[
A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ et } B = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}.
\]
Il admet un unique couple de solutions si \(A \) est inversible.
À la calculatrice, on trouve : \(A^{-1} = \frac{1}{16} \begin{pmatrix} -3 & 5 & 4 \\ 2 & 2 & -8 \\ 5 & -3 & 4 \end{pmatrix} \) donc \(X = A^{-1}B = \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix} \).
L’unique solution du système est donc le triplet \((-\frac{1}{2}; 0; \frac{3}{2})\).

Corrigé de l’exercice 13.

1. Posons \(C = \begin{pmatrix} x \\ y \end{pmatrix} \).

\[
C = AC + B \iff \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

\[
\iff \begin{\cases} x = 2x - 3y + 1 \\ y = -x - 2y - 1 \end{cases}
\]

\[
\iff \begin{\cases} x - 3y = -1 \\ -x - 3y = 1 \end{cases}
\]

\[
\iff x = -1, \ y = 0
\]

Ainsi, \(C = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \).

265
2 On a : \[
\begin{align*}
U_{n+1} &= AU_n + B \\
C &= AC + B
\end{align*}
\]
donc, par soustraction, on a :
\[
U_{n+1} - C = AU_n - AC \quad \text{soit} \quad U_{n+1} - C = A(U_n - C) \quad \text{soit} \quad X_{n+1} = AX_n
\]

3 D’après la question précédente, la suite \((X_n)_{n \geq 0}\) est géométrique de raison \(A\) et de premier terme \(X_0 = U_0 - C = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \).
Ainsi, \(X_n = AX_{n-1} = A^2X_{n-2} = \cdots = A^nX_0\).

4 \(PDP^{-1} = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & -3/2 \end{pmatrix} = A\) (avec la calculatrice).

- Initialisation : \(A^1 = PD^1P^{-1} \), évident.
- Hérédité : supposons qu’à un certain rang \(k\), \(A^k = PD^kP^{-1}\).
 Alors, \(A^{k+1} = A^kA = PD^kP^{-1}PD^kP^{-1} = PD^{k+1}P^{-1}\).
L’hérédité est alors vérifiée. L’égalité est donc vraie pour tout entier \(n \geq 1\). Pour \(n = 0\), l’égalité est évidente : \(A^0 = I = PP^{-1}\).

Notons que \(D^n = \begin{pmatrix} 1^n & 0 \\ 0 & (-1)^n \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & (-1)^n \end{pmatrix} \).

5 On sait que \(X_n = A^nX_0\) donc :
\[
X_n = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & (-1)^n \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & -3/2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}
\]
\[
= \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} (-1)^{n+1} & 1/2 \\ 3(-1)^{n+1} & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}
\]
\[
= \begin{pmatrix} 9/2 + 5(-1)^{n+1} \\ -3/2 + 5(-1)^n \end{pmatrix}
\]
Ainsi,
\[
U_n = X_n + C = \begin{pmatrix} 9/2 + 5(-1)^{n+1} \\ -3/2 + 5(-1)^n \end{pmatrix} + \begin{pmatrix} -1 \\ 0 \end{pmatrix}
\]
soit
\[
U_n = \begin{pmatrix} 7/2 + 5(-1)^{n+1} \\ -3/2 + 5(-1)^n \end{pmatrix}
\]
Ainsi, pour tout entier naturel \(n\),
\[
\begin{align*}
u_n &= \frac{7}{2} + \frac{5(-1)^{n+1}}{2} \\
v_n &= -\frac{3}{2} + \frac{5(-1)^n}{2}
\end{align*}
\]
Raisonnons par récurrence.

1. Initialisation : évidente car $u_1 = 1$ et $2^1 = 2$.

- Hérédité : on suppose que pour un entier $k \geq 1$ fixé, $A^k = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

\[
A^{k+1} = A^k A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & u_k + 2^k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & u_{k+1} \\ 0 & 1 \end{pmatrix},
\]

L’hérédité est alors vérifiée. L’égalité est alors vraie pour tout $n \geq 1$.

2. $u_{n+1} - u_n = 2^n$ donc $\sum_{k=1}^{n-1} (u_{k+1} - u_k) = \sum_{k=1}^{n-1} 2^k$.

Ainsi, $u_n - u_1 = \sum_{k=1}^{n-1} 2^k$, soit $u_n = \sum_{k=0}^{n-1} 2^k$.

Par conséquent, $u_n = \frac{2^{n+1} - 1}{2 - 1} = 2^{n+1} - 1$. On a alors :

\[
A^n = \begin{pmatrix} 1 & 2^{n+1} - 1 \\ 0 & 1 \end{pmatrix}.
\]

Corrigé de l’exercice 15.

1. $A = \begin{pmatrix} 0,7 & 0,6 \\ 0,3 & 0,4 \end{pmatrix}$

2. • Initialisation : $U_1 = AU_0$ par définition de A donc l’initialisation est réalisée.

- On suppose que pour un entier naturel k fixé, $U_k = A^k U_0$.

\[
U_{k+1} = AU_k = A \times A^k U_0 = A^{k+1} U_0.
\]

L’hérédité est alors vérifiée. Ainsi, pour tout entier naturel n, $U_n = A^n U_0$.

3. $A^2 = \begin{pmatrix} 0,67 & 0,66 \\ 0,33 & 0,34 \end{pmatrix}$, $A^3 = \begin{pmatrix} 0,667 & 0,666 \\ 0,333 & 0,334 \end{pmatrix}$ et $A^4 = \begin{pmatrix} 0,6667 & 0,6666 \\ 0,3333 & 0,3334 \end{pmatrix}$.

On peut supposer alors que $\lim_{n \to +\infty} A^n = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}$.

Ainsi, $\lim_{n \to +\infty} U_n = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0,3 \\ 0,7 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} \\ \frac{1}{5} \end{pmatrix}$ et donc $\lim_{n \to +\infty} a_n = \frac{2}{3}$ et $\lim_{n \to +\infty} b_n = \frac{1}{3}$.

Corrigé de l’exercice 16.

1. $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$.

2. • Initialisation : $U_1 = AU_0$ par définition de A donc l’initialisation est réalisée.

- On suppose que pour un entier naturel k fixé, $U_k = A^k U_0$.

\[
U_{k+1} = AU_k = A \times A^k U_0 = A^{k+1} U_0.
\]

L’hérédité est alors vérifiée. Ainsi, pour tout entier naturel n, $U_n = A^n U_0$.

3. À la calculatrice (par exemple), on vérifie que $PQ = QP = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ donc P et Q sont inverses l’une de l’autre.
Si $A = QDP = P^{-1}DP$, alors $PA = PP^{-1}DP = DP$ et $PAP^{-1} = DPP^{-1} = D$.

On trouve alors $D = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{6} \end{pmatrix}$.

On en déduit que $A^n = (QDP)^n = QD^nP$ et donc $U_n = A^nU_0 = QD^nPU_0$.

En effectuant le calcul, on trouve ce qui est demandé.

On trouve alors $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = \frac{3}{5}$.